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BEAM-BEAM INTERACTION EFFECTS 

IN THE FERMILAB COLLIDER 

DONNA MARIE SIERGIEJ 

Ph.D., Physics, University of New Mexico, 1995 

Fermi National Accelerator Laboratory’s Collider is the first collider to implement a he- 

lical orbit separation scheme for colliding protons and antiprotons. Six antiproton bunches 

collide head-on with six proton bunches at the two high energy physics detector locations 

in the ring. The orbits are separated in both the horizontal and vertical planes at all other 

collision points. 

A study of the dependence of the beam-beam interaction on transverse beam separation 

is presented. Beam-beam experiments in the Collider determined that the beam-beam in- 

teraction is the predominant nonlinear force which drives seventh order resonances in the 

Collider. These odd-ordered resonances were observed to cause large particle losses in the 

presence of a transverse beam separation or crossing angle at an interaction point. This ob- 

servation led to a method of “helical orbit tuning” using electrostatic separators and resulted 

in a 5% increase in the luminosity during Collider Run IA. Independant tuning of beam sep- 

aration and crossing angle at head-on collision points now provides a luminosity enhance- 

ment in routine Collider operations. 

Beam-beam experiments were compared with beam-beam simulations to produce an un- 

derstanding of colliding beam behavior when two particle distributions collide with a trans- 

verse beam separation. An experimental measure of particle losses due to resonant excita- 

tion at different beam separations showed good agreement with beam-beam simulation re- 

sults. This comparative agreement extends across a range of beam separations and particle 

tunes. 

This investigation lays a foundation for using beam-beam simulations as a predictive 

tool for defining minimum beam separation criteria for stable Collider operation. 
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Chapter 1 

INTRODUCTION 

The goal of accelerator physics in hadron colliders is to provide a large number of in- 

teractions of colliding particles at a large center of mass energy (TeV range). Collisions of 

particles at such high energies allow high energy physicists to look for interactions which 

will further their understanding of the strong force and the elementary particles subjected 

to this force. 

The number of interactions per second of two colliding distributions of particles is de- 

fined as 

R = L U‘t& (1.1) 

where l is the luminosity and g tot is the total nuclear cross section. The total nuclear cross 

section is the cross sectional area of collisions, given in units of square cm. Luminosity is 

the number of interactions per square cm per second. 

In order to provide a large number of interactions, an accelerator physicist works at op- 

timizing the luminosity. It will be shown in this work that the luminosity of two colliding 

particle distributions of equal transverse size is 

(1.2) 

The particle distributions are assumed to be Gaussian distributions with a standard devia- 

tion given by CT. The revolution frequency is frev and F(z) is a factor taking into account 

the longitudinal distribution of the bunches. The number of particles in the two colliding 

distributions are given by Ni and N2, respectively. 

A particle distribution is confined and accelerated in a synchrotron with an externally 



applied RF field, which bunches particles into discrete time-dependent distributions. If there 

are multiple bunches colliding in an accelerator, the total luminosity is 

L total = LB (1.3) 

where B denotes the number of bunches. 

The beam-beam interaction is the electromagnetic interaction a particle experiences as 

it travels past an opposing particle distribution. Two colliding bunches in a synchrotron 

will experience a beam-beam interaction at two points in the ring. Multiple bunches in a 

synchrotron will increase the number of beam-beam interaction points. 

The beam-beam interaction between colliding particles has been a dominant factor in 

limiting the integrated luminosity in a colliding beam storage ring. Efforts to curb mea- 

sureable luminosity limitations due to the beam-beam interaction seem to have led quite 

naturally to an implementation of beam separation schemes in storage rings. Particles of 

opposite charge were separated in the VEPP-2 electron-positron storage ring at Novosibirsk 

as early as 1967.111 

In the first Collider Run (1988- 1989) of Fermilab’s hadron collider known as the Teva- 

tron, the principle limitation on the luminosity was due to the beam-beam interaction. The 

Collider had reached its “beam-beam limit”; that is, one could not increase the luminosity 

by decreasing the beam size or by increasing the number of protons per bunch.121 In fact, it 

was necessary to dilute the phase space density of the protons in order to maintain antipro- 

ton stability. In order to decrease beam-beam effects at unwanted collision points, a method 

of separating colliding bunches at certain locations in the ring was developed. This became 

necessary in order to progress to a higher luminosity. 

A helical orbit separation scheme was first implemented in the Collider in Collider Run 

IA (1992-1993). Six antiproton bunches and six proton bunches were separated at every 

beam-beam collision point except for the two crossing points at the high energy physics 

detector locations. Colliding beams moved in helical orbits with beam separation present 

in both the horizontal and vertical planes. The achievable luminosity of 1.6 x 1030cm-2 

set-’ without beam separation increased to luminosities of 5.4 x 1030cm-2 set-’ in routine 

operations during Collider Run IA.131 

This dissertation presents a study of the dependence of the beam-beam interaction on 

transverse beam separation. A method of tuning the helical orbit in order to optimize the 

luminosity is discussed. Experiments performed in the Tevatron Collider measured parti- 

cle losses as a function of beam separation. A comparison is made between experimentally 

2 



measured losses and the dynamics of a particle’s motion in a simulation code which mod- 

els the beam-beam interaction. Particle losses in a real accelerator are related to losses as 

defined in the model. The similarities along with the discrepancies between the measure- 

ments and the beam-beam simulation are discussed. Observations are made concerning the 

predictive power of a beam-beam model. 

Chapter 2 contains a brief description of relevant accelerator physics parameters used 

throughout this work. A Hamiltonian analysis of the beam-beam interaction is discussed 

in Chapter 3, along with an introduction of the beam-beam simulaton code. Chapter 4 de- 

scribes various devices in the Tevatron which were used as measuring tools in beam-beam 

experiments. Chapter 5 presents the results of beam-beam experiments in the Tevatron and 

compares the experimental results to beam-beam simulations. Chapter 6 concludes the beam- 

beam study with a summary of the results. 

3 



Chapter 2 

PARTICLEMOTIONINANACCELERATOR 

A particle accelerator uses combinations of focusing and defocusing magnetic elements 

to define a stable orbit for accelerating particles. This system of strong focusing is known 

as an alternating gradient system. 141 Particle motion under the influence of an alternating 

gradient system in the Tevatron Collider is the subject of this chapter. 

A reader’s knowledge of accelerator physics terminology is not assumed, so accelerator 

physics concepts relevant to this work are defined. Section 2.1 provides a brief description 

of the dynamics of a single particle’s motion. The fundamentals of particle motion in the 

presence of magnetic field errors is discussed in Section 2.2. 

This dissertation presents beam-beam experiments performed in Fermilab’s Tevatron 

during a Collider Run ( Collider Run IA and Collider Run IB ). Section 2.3 is intended to 

introduce the reader to the Tevatron as it is used during a Collider Run. Section 2.4 lists the 

operational accelerator physics parameters relevant to the beam-beam experiments. 

2.1 RELEVANT ACCELERATOR PHYSICS PARAMETERS 

The Fermilab Tevatron has the distinction of being the highest energy collider in exis- 

tence, currently colliding proton and antiprotons at a center of mass energy of 1800 GeV. 

The ability to constrain such high energy particles in a 1 km radius ring is due to the bend- 

ing and focusing capabilities of the superconducting magnets. 1% The Tevatron was the first 

accelerator to make use of superconducting magnets. 161 All of the dipole, quadrupole and 

correction magnets are cooled to 4.6 degrees Kelvin, enabling maximum electric current to 

flow through coils with minimal resistance. 

An overview of the Fermilab accelerator complex is shown in Figure 2.1 .171 The Teva- 

tron is divided into six sectors called arcs which are connected by six long straight sections. 
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Figure 2.1: Layout of Fermilab’s accelerators. The relative size of the accelerators is ap- 
proximately to scale except that the Tevatron is actually built below the Main Ring. The 
radius of the Main Ring and Tevatron is 1 km. High energy physics detectors are located at 
the BO and DO straight sections. 



L 
reference point 4 

design orbit 

Figure 2.2: Coordinate system to define a particle’s closed orbit. 

The arcs are composed of a repeating sequence of “cells”. The configuration of magnets in 

a cell is determined by the principles of an alternate-gradient focusing scheme. A typical 

half-cell in the Tevatron consists of four dipole magnets, a quadrupole and magnetic cor- 

rection elements. The detailed description of the way in which dipoles, quadrupoles, drift 

sections and all of the correction elements are placed in the ring is called the accelerator 

“lattice”. 

The constant magnetic field of the dipole magnets in the arcs of the Tevatron guides a 

charged particle along an approximately circular orbit. If the particle travels through the 

center of the quadrupoles and correction elements, consequently being guided only by the 

dipole field, the particle’s trajectory is said to follow the design orbit of the accelerator. Any 

particle whose path deviates slightly from the design orbit is focused onto a closed orbit by 

quadrupole magnets. 

It is convenient to define a reference frame to describe a particle’s closed orbit as shown 

in Figure 2.2. The ji and 9 directions describe the horizontal and vertical deviations of the 

particle’s motion from the design orbit. The 5 direction is the curvilinear coordinate indicat- 

ing the direction tangential to the particle’s forward motion. At high energies, the azimuthal 

location s is represented in the time domain as s = ct, c being the speed of light. The co- 

ordinate system is a right-handed coordinate system, so the positive sense of 2 points in the 

radially outward direction and 9 points in the vertically upward direction. 

A quadrupole magnet produces a magnetic field which changes linearly in both trans- 

verse dimensions; B, = $$ y and BY = $) I. An approximation which is made in a high 

energy accelerator is a thin lens approximation: a particle travelling through a quadrupole 

will experience a negligible change in its position and experience only a small change in 

the transverse components of its momentum. In this approximation, a particle travelling 

through a short quadrupole of length L receives a small-amplitude kick which is given by 

6 



Ax’ = ,& B, -- AY’ = & %!. (2.1) 

The prime denotes a differentiation with respect to the longitudinal coordinate s; 5’ E 

dz/ds. The constant dipole field guiding the particle in a circular orbit is given by B and 

the dipole bend radius is p. The quantity /BP[ is the momentum per unit charge of a particle 

(18~1 = p/e) and is called the magnetic rigidity. The quadrupole kick is focusing in the 

horizontal plane and it is defocusing in the vertical plane. It is possible to produce a net 

focusing system using a sequence of quadrupoles in which a quadrupole which is defocusing 

in a given plane is followed by a quadrupole which focuses in that plane. Such a system of 

alternating focusing tid defocusing quadrupoles, along with the drift spaces in between the 

quadrupoles, form the basic elements of an alternating gradient system.141 

The Lorentz force, ev’x 2, describes the motion of a particle in the presence of the dipole 

magnets, quadrupole magnets and drift sections of a synchrotron. The equation of motion 

derived from this force is known as Hill’s equation. In one dimension, Hill’s equation is141 

a22 
@ + K(s)x = 0. (2.2) 

The deviation of a particle’s motion from its closed orbit is given by Z(S). The quadrupole 

strength is Ii’(s), where 

K(s) = +$3~(s). (2.3) 

The magnetic field at the azimuthal point s is B(s). The gradient of the quadrupole field, 

B’ = dB,/dx = a&/ay, is equal in both transverse planes as described by Maxwell’s 

expression for the curl of B in free space, V x 8 = 0. Note that Ii’(s) is zero in a drift section 

and is also zero in a dipole if one neglects magnetic field errors. In a circular accelerator, the 

quadrupole strength is periodic with the circumference of the accelerator. It also alternates 

in sign depending upon whether the quadrupole is focusing or defocusing in a given plane. 

In general, K(s) may be taken as a constant for each magnetic element in the ring. At 1 

TeV, a standard focusing quadrupole in the Tevatron operates with a magnetic field gradient 

of 76 T/m, yielding a quadrupole strength of 0.02277 rnm2. The linear motion of a particle 

through each element in the ring can be solved for analytically in Hill’s equation if the initial 

position and angle of the particle are known. Let the initial position and angle of a particle 

be x1 and x’, and its final position and angle after traversing a magnetic element of length L 

7 



be 22 and z;. The motion of the particle through the magnetic element is described by 

( Y)=a2( 9 (2.4) 

where Ml2 is a linear transfer matrix. The linear transfer matrices for quadrupoles (K # 0), 

drift sections (li’ = 0) and dipoles (K = 0) of length L are listed here. 

1 L 
K=O: f&= ( 1 0 1 

K#O: M12= ( 
cos( L&z) -& sin( L&T) 

-asin cos(LdE) ) 

(2.5) 

(2.6) 

The focusing scheme used in accelerators is comparable to a combination of thin lenses 

in an optical system. In other words, the length of a quadrupole is much smaller than its 

focal length. Using the thin lens approximation, the length of the quadrupole in the linear 

transfer matrix of Equation 2.6 is assumed to go to zero as the quantity fi L remains finite. 

The transfer matrix of a focusing quadrupole under the thin lens approximation is 

M12 = 1 0 ( i (2.7) -- 
: 1 ’ 

where f = (I(L)-’ . The transfer matrix of a focusing quadrupole is none other than that of 

a thin optical focusing lens with focal length f. As shown previously, the same quadrupole 

will be defocusing in the other transverse plane of motion. A defocusing transfer matrix is 

equivalent to the focusing transfer matrix described above with the sign off reversed, cor- 

responding to a thin defocusing lens in an optical system. A standard quadrupole of length 

1.678 meters in the Tevatron has a focal length of 26.1 meters. Thus the longitudinal dis- 

tance between focusing and defocusing quadrupoles in the Tevatron is approximately 26 

meters to provide net focusing in both transverse planes of motion. 

ACCELERATOR LATTICEPARAMETERS 

If a particle traverses a series of n elements having transfer matrices Ml ,M2,M3 up to 

Mn, the motion through the elements is described by a single linear transfer matrix: 

Ml2 = M,M2M3....- W2. (2.8) 
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This method of solution is useful in the design of a ring, but it is cumbersome to use in 

describing the general nature of particle trajectories. A much more convenient solution of 

Hill’s equation is given by the general solution for x(s): 

x(s) = A&&OS ($(s) + 6). (2.9) 
The functions p(s) and G(s) are predetermined functions of s while ‘-1 and 5 are constants 

which determine a particular particle trajectory. Note that Hill’s equation is the equation 

of motion of a harmonic oscillator with a periodic spring constant which depends upon dis- 

tance. As would be expected, its solution resembles that of a harmonic oscillator except that 

the amplitude of oscillation is no longer constant but varies with distance. 

A better understanding of the beta function, p(s), and the phase advance of a particle, 

$(s), is obtained by substituting x(s) into Hill’s equation. Two differential equations be- 

come apparent, 

$w, = 0, 
and 

2p”P - (@‘)2 - 4p2(?$)2 + 4p%(s) = 0. 

(2.10) 

(2.11) 

As Equation 2.11 indicates, if the focusing strength K(s) is known, a solution for the 

beta function, ,8(s), is found numerically. The beta function thus represents an alternative 

description of the magnetic focusing structure of the accelerator. It is a powerful represen- 

tation in that it bypasses the necessity to always map a particle through all of the individual 

magnetic elements in the ring. The focusing properties of the entire ring are represented by 

the beta function in each transverse plane. 

Equation 2.10 gives the phase advance of a particle’s motion. A particle’s phase advance 

from a location s1 in the ring to a location s2 is . 

A$= “-. J 
ds 

Sl PM 

(2.12) 

The phase advance of a particle does not change with a constant frequency like that of a har- 

monic oscillator, It increases as a function of the beta function or, equivalently, as a function 

of quadrupole strengths. The phase advance of a particle is defined in both the horizontal 

and vertical planes. In a given transverse plane, the beta function in the arcs of the Tevatron 

is approximately 100 meters at the location of a focusing quadrupole and is approximately 
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30 meters at the location of a defocusing quadrupole. A particle’s horizontal phase advances 

more rapidly at the location of a defocusing quadrupole. 

The parameters p(s) and $J( ) s are conventionally called accelerator lattice parameters 

or Twiss parameters. Twiss parameters were used by Courant and Snyder to define a linear 

transfer matrix which mapped a particle’s motion through any number of magnetic elements 

in an accelerator.141 This linear transfer matrix represents a particle’s complete traversal in 

one plane from a location si to a location ~2. As in Equation 2.8, the transfer matrix is given 

bY 

msinA$ M fi(cos A$ + crl sin A+) 
12 

= 

-zsinA++ zcosA$ &(cosAlC,-(~zsinA$) 
(2.13) 

The parameter a(s) = --i(ap/a s is an accelerator lattice parameter which describes the ) 

slope of the beta function. 

THETUNE OFAPARTICLE 

The periodicity of the beta function with the circumference of the ring dictates that a 

particle will advance in phase by the same amount upon each revolution of the ring. This 

quantity is written as 2rQ, where 

The parameter Q is known as a particle’s tune. The complete integral signifies that the inte- 

gration is over one complete revolution of the ring. Inasmuch as the beta function is defined 

in two transverse planes, the tune of a particle is defined in two transverse planes. A parti- 

cle’s tune is an important quantity in accelerator physics and particularly in this work, so it 

will be discussed in some detail in this chapter and in later chapters. 

Consider observing a particle’s motion at only one azimuthal location in the ring. A 

particle’s position and phase at one observation point can be mapped in terms of an integer 

turn number by equating the turn number t with the azimuthal coordinate s as t G s/2n R. 

A particle’s trajectory from turn t - 1 to turn t is described by 

(z:) =M( :r ),,- (2.15) 

The phase advance of a particle from turn t - I to turn t is A$ = 2rQ. Referring to 

Equation 2.13, the one-turn transfer matrix M is constructed; 
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.x - 

(4 (b) 

Figure 2.3: The phase space transformation of 100 turns of a linear one-dimensional tum- 
by-turn map from ( 2, IC’ ) coordinates to normalized ( XN, xx ) coordinates. 

M= 
cos2nQ + crsin2rQ ,f3sin2i;Q 

-y sin 27rQ . cos 2rQ - a sin2wQ 
(2.16) 

The lattice parameters cx and ,8 are calculated using knowledge of the one-turn map, M. 

TRANSVERSE BEAM EMITTANCE 

A plot of a particle’s position and phase at one location in the ring over the course of 

many turns is shown in Figure 2.3a. The particle’s trajectory maps out an ellipse in the phase 

space coordinates (2, x’). The area of the ellipse is equal to nA2, where A is a constant. This 

area is a constant of the motion, similar to the total energy of a harmonic oscillator. After 

calculating the derivative of x(s) with respect to s using Equation 2.9, the constant of the 

motion is found to satisfy 
x2 $ (/3x’ + ox)2 

P = A2* 
(2.17) 

This equation points to a useful transformation from the (x, CC’) coordinate system to a nor- 

malized coordinate system (XN, X’N), where 

XN = 5X 

xx = “x + px’. VT J- 

(2.18) 

Since p and x are in units of meters, the normalized coordinates are in units of square root 

of a meter. This transformation is referred to as a Courant-Snyder transformation. r41 It is 
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based on the Floquet theory which ensures the existence of a periodic coordinate system 

which removes time dependence from the linear system. 181 By making this transformation, 

M now becomes a simple rotation matrix. As shown in Figure 2.3b, the motion of a particle 

over many turns traces out a circle in normalized phase space coordinates. Just as in the 

elliptical mapping, the area of the circle in phase space remains constant and equal to nA2. 

In accelerator physics, this constant of the motion is known as the transverse emittance of 

a single particle. 

Formally, transverse beam emittance is defined in terms of a distribution of particles. 

Transverse beam emittance is defined as the area of phase space in which a prescribed frac- 

tion of particles reside. With a measurement of the beam distribution in physical space at 

one location in the ring, the emittance enables calculation of the beam size at other azimuthal 

locations. 

In the Tevatron, a valid approximation is to assume that a particle distribution in both 

the transverse and longitudinal dimensions is a Gaussian distribution, that is, 

,$) 
N(x) = & e-s (2.19) 

in one dimension. The parameter N(x) denotes the number of particles at a transverse posi- 

tion x. The total number of particles in the distribution is NO. The rms beam size in physical 

space is given by O. The beam emittance, e, for a Gaussian distribution is 

(2.20) 

where the beta function and o are defined at the same azimuthal location. 1161 The units of 

emittance are mm-mrud. The fraction of particles contained within a given beam emittance 

is f. Determination of the fraction of particles to include in a definition of a beam size is 

somewhat arbitrary, hence different accelerator organizations choose different values off. 

Fermilab chooses to include 95% of the particle distribution in phase space, yielding a beam 

emittance of 

6rcr2 

E=P’ 
(2.2 1) 

Since beam emittance is a constant of the motion, the value of g”//3 remains constant in 

each transverse plane of motion around the entire ring. Thus, as Equation 2.9 indicates, an 

appropriately scaled beta function represents an envelope of the physical boundary that a 

beam distribution may encompass as it traverses the ring. 
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Beam emittance as defined above may not remain constant as the energy of the beam 

changes though. Liouville’s theorem defines the phase space area which remains invariant 

over all particle energies. f1 ‘1 In order to define this invariant, a transformation from (x, 5’) 

coordinates to the conjugate variables (x, pZ) is required. The variable pZ is the transverse 

component of the particle’s momentum defined in one degree of freedom. The phase space 

area in terms of ( 2, pz) coordinates is 

f 
dp,dx = mc (r&l f dx’dx = nzc (y/?&l 6. 

Normalized emittance is given by 

(2.22) 

(2.23) 

Note that the subscript notation on the parameters /? and y indicate that these quantities are 

not accelerator lattice parameters. They are the familiar relativistic parameters; p = V/C and 

y = 1/( 1 - ,f?‘). The particle’s rest mass is denoted by nz. As defined above, normalized 

emittance is invariant over all particle energies. It is a measuring tool which is used very 

often to determine if the accelerator is running properly over its entire energy range. 

CONSTRAINTS ON A PARTICLE’S TUNE 

The magnetic field in a magnetic element can be expressed as a series of multipole terms: 

the coefficient of the second order term (n = 2) represents the quadrupole field component, 

the coefficient of the third order term (n = 3) represents the sextupole field component of 

the magnetic field, and so forth (see Section 2.2). Upon passing through a magnetic ele- 

ment, a particle will experience a kick every revolution of the ring due to the sum of all 

field components in the magnetic element. 

Consider the motion of a particle in one dimension with a tune satisfying the relation 

nQ = p, where n and p are integers. If n = 2 and the particle’s tune is a half-integer value, 

the kick will add in phase and the particle’s tune is on resonance. Similarly, if 72 = 3 and the 

particle’s tune is a third integer value, a resonant condition exists. This argument extends 

to higher order magnetic field components as well. A resonant condition is equivalent to 

adding constant vectors parallel to the XL axis of phase space as shown in Figure 2.4. A 

particle’s phase space history in the presence of a constant kick at a single location is mapped 

for a tune which is an odd multiple of one-half. The kick in 2’ in Figure 2.4a translates into 

a growth in 2 at a downstream location as seen in Figure 2.4b. 
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Figure 2.4: Phase plot of a linear one-dimensional turn-by-turn map of 9 turns with a con- 
stant kick in Z’ at one location. The particle’s tune is near the half-integer. Figure a is the 
phase plot at the location of the kick. Figure b is the phase plot at a location w/2 downstream 
of the kick location. The turn number is labelled at each point in phase space. 

After many turns, even a small kick in x’ will cause growth in a particle’s amplitude at 

a downstream location and will eventually lead to the loss of the particle. This resonance 

condition is defined in two transverse dimensions as 

nzQz f nyQy = P. (2.24) 

The order of the resonance is given by summing the constants In, ( + In, ( . The integer p is 

the azimuthal frequency which drives the resonance. [121 

A plot of resonance lines satisfying Equation 2.24 is shown in Figure 2.5. The solid lines 

represent sum resonances and satisfy Equation 2.24 when both n, and nY are positive. The 

dashed lines represent difference resonances and satisfy Equation 2.24 when either n, or ny 

are negative. 

If all resonance lines which satisfied Equation 2.24 were drawn in tune space, a count- 

ably infinite number of lines would fill the plot. It will be demonstrated in this work that 

only lower order resonance effects in the Tevatron are important to avoid. Consequently, 

only resonance lines up to twelfth order are drawn. The fractional tune used as a nominal 

operating point in the Tevatron Collider is marked in the tune plot. The horizontal and ver- 

tical operating tunes are amidst the region of 12th order resonances and are bordered by 5th 

and 7th order resonances. 

The expression relating a magnetic field gradient error in an accelerator to the shift in 
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Figure 2.5: Resonance lines in tune space. Solid and dashed lines denote sum and differ- 
ence resonances, respectively. Regions are labelled by the order of the sum resonances. The 
operating point of the Tevatron is indicated by the cross mark. 

a particle’s tune is found by comparing the one turn transfer matrix which includes a small 

gradient error to the transfer matrix of equation 2.16. The gradient error is expressed as the 

inverse focal length of a thin quadrupole; q = i = IiL. The shift in a particle’s tune due 

to a magnetic field gradient error q is 

(2.25) 

where p is the beta function at the location of the gradient error. 

In order to control the tune shift of particles due to random gradient errors in standard 

quadrupoles of the lattice, correction quadrupoles are added at a location close to the stan- 

dard quadrupoles. The correction quadrupoles are capable of varying the tune of the Teva- 

tron by fl tune unit at 900 GeV to keep a particle distribution in a “resonance-free” region 

of tune space. 
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MOMENTUM DISPERSION AND~HROMATICITY 

Thus far, single particle motion in a synchrotron has been discussed for particle trajec- 

tories with a design energy specified by the magnitudes of the design magnetic fields. How- 

ever, particle distributions in a synchrotron do not all have the design energy. If a particle is 

injected into the accelerator with an energy which does not match the accelerator’s design 

energy, for example, a particle’s energy will oscillate about the design energy. These energy 

oscillations, referred to as synchrotron oscillations, will couple into the particle’s transverse 

motion through dispersion. Off momentum particles will no longer pass axially through the 

center of a quadrupole and consequently be subject to a focusing force. The closed orbit 

will thus be displaced from the central design orbit. l1 ‘1 A particle’s transverse position with 

a momentum offset is given by 

AP 
4s) = xp(s> + 17(s)&-. (2.26) 

The free betatron oscillations of Equation 2.9 are denoted by xp(s). The momentum 

offset, Ap, is the measured deviation of the particle’s momentum from the design momen- 

tum, pa. The parameter q(s) is called the dispersion and is in units of meters. Since orbits 

of higher momentum are usually at a larger radius in a high energy accelerator (when a par- 

ticle’s energy is above transition energy), the dispersion function is usually a positive func- 

tion. In an accelerator which bends horizontally and thus lies in the horizontal plane, path 

length deviations from the design will occur horizontally. The dispersion function, there- 

fore, is generally a non-zero function only in the horizontal plane. In the Tevatron, the hor- 

izontal dispersion in the arcs ranges from 2 to 6 meters. The rms momentum spread of a 

bunch distribution at 900 GeV is typically y = 0.0001. 

The dispersion T(S) and the slope of the dispersion 7’ (s) = 87 (s) /as are both Twiss pa- 

rameters. Along with p(s), a(s), and $(s), they define a complete set of accelerator lattice 

parameters used to map a particle’s linear motion in a synchrotron. 

Given the dispersion and beta function at a specific location in the ring, the rms trans- 

verse size of a bunch distribution of emittance c and momentum spread o,,/p is completely 

defined. An unnormalized beam emittance defined at la (f = 0.15 in Equation 2.20) gives 

an rms transverse beam size of 

(2.27) 

The index i is used to emphasize the parameters which are defined in both transverse planes; 
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? G i, $. Using the Fermilab definition of beam emittance (Equation 2.21), the rms trans- 

verse beam size in terms of normalized beam emittance is 

(2.28) 

Consider the variation of the rms transverse beam size in the arcs of the Tevatron at 900 GeV 

for a beam with a normalized emittance of 207; mm-mrad. A beta of 100 m and a dispersion 

of 6 m corresponds to a cr of 0.67 mm. A beta of 30 m and a dispersion of 2 m corresponds 

to a g of 0.37 mm. A particle at 30 in a particle distribution would occupy up to 2 mm in 

both transverse dimensions, or approximately 3 square mm in transverse space. 

Because a spread of momentum exists in a particle distribution, particles will traverse a 

quadrupole magnet at different transverse positions. Consider a particle with its momentum 

expressed in terms of the design momentum and a momentum offset as p = pa( 1 + z). 

Upon traversing a focusing quadrupole of length L, the particle will see a change in the fo- 

cal length of the quadrupole. The focal length of a quadrupole was previously found to be 

proportional to a particle’s momentum; .f = p/( eB’L). By substituting the new momentum 

of the particle into this focal length expression, the change in focal length is found to be 

(2.29) 

A positive momentum offset corresponds to a larger focal length. A particle with a pos- 

itive momentum offset will thus be focused less than a particle at the design momentum. 

This leads to a chromatic focusing effect on a distribution of particles similar to chromatic 

effects seen in optical systems. A parameter called the chromaticity, [, is used to relate a 

particle’s momentum offset to a corresponding change in its tune; 

AQ=Cz. (2.30) 

The chromaticity is defined in each transverse plane of motion. By using the expression for 

the tune shift due to a quadrupole kick as described by Equation 2.25, the chromaticity is 

formally defined as 

(= --$?(s)K(s)ds, (2.3 1) 

where I(( s) is the focusing strength of the lattice quadrupoles. i1 ‘1 The natural chromaticity 

is the chromaticity of a synchrotron with no correction elements added to the lattice. The 
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natural chromaticity is approximately equal in magnitude and opposite in sign to the tune 

of the synchrotron. 

Given a momentum spread in a particle distribution, a large chromaticity may cause a 

tune spread which is large enough that some of the particles have tunes that lie on or near 

undesirable resonances. To compensate for this effect, sextupole magnets are added as cor- 

rection elements in the lattice. The magnetic field in a sextupole is quadratic in position; 

B, = fB:g' and B, = ~B$2. Sextupole magnets, therefore, provide a field gradient 

which is linearly proportional to a particle’s position offset. Using Equation 2.3 1, the con- 

tribution to the chromaticity from N sextupoles in the accelerator ring is 

Q = (2.32) 

where Ic( s) = B"( s)L/ Bp. The natural chromaticity is thus corrected for with the addition 

of sextupoles at high dispersion points in the ring. Note, however, that along with the bene- 

ficial contribution to the chromaticity, sextupoles do add nonlinearities to the lattice which 

must be accounted for to ensure stable running conditions. 

2.2 RESONANT MOTION DUE TO MAGNETIC FIELD ERRORS 

Magnetic field errors arise from many sources in a real accelerator. There may be small 

magnet-to-magnet variations in the magnetic field produced even when the electric currents 

are the same in all magnets. Even if the magnetic field is within the design specifications, 

a magnet may be misaligned from its design position. This misalignment may occur in its 

transverse placement in the ring causing the particle to see field errors in normal compo- 

nents of the magnetic field. The misalignment may also manifest itself as a slight rotation 

of the magnet causing the particle to interact with skew components of the magnetic field. 

Magnetic fields along with field errors in a magnet are fully expressed as a fraction of the 

dipole bending field Bo by[14]l[13] 

iB&, y) + B&, y) = Bo ‘&bn + k.)(~ + iy)“. (2.33) 
n=O 

The constants b, and a, are the multipole coefficients of the magnetic field. 

Suppose that there is a constant magnetic field error in either a dipole or quadrupole 

which is located at s = 0. As discussed in Section 2.1 of this chapter, a particle’s trajec- 

tory will be a free betatron oscillation about the unperturbed closed orbit. When the particle 

arrives at s = 0, the slope of its trajectory will change by an amount A@. To constrain the 
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particle’s motion to a new closed orbit, the trajectory of the orbit must close upon itself after 

one revolution. 

x,(s t 2rR) = x,(s) (2.34) 

This constraint allows a closed orbit position to be calculated: 

xc,(s) = A@GiE 
2 sin XQ 

cos(A$ - rQ) (2.35) 

where 0 < A$ < 2n and ,f30 is the beta function at the location of the field error. 1151 The dis- 

placement of the orbit is directly proportional to the magnitude of A0 and the beta function 

at the location of the error. A resonant condition due to the field error is seen in the denomi- 

nator of the closed orbit expression. As the tune approaches an integer, the amplitude of the 

oscillation will become large. This condition to be avoided is known as an integer resonance 

condition. 

For completeness, let the transverse position of a particle be written explicitly as the sum 

of free betatron oscillations, energy oscillations and oscillations due to closed orbit errors. 

A subscript notation is used to denote zp(s) as the free oscillations of Equation 2.9 about 

the closed orbit given by Equation 2.35. The position x~(s) denotes the change in position 

due to dispersion effects as described in Equation 2.26. Beam position monitors in the ac- 

celerator will thus measure orbit positions which include all of these effects: 

x(s) = q(s) + Q(S) + xc(s). (2.36) 

If a field error exists which is a quadrupole field error, the beta function in the accelerator 

will change. The deviation of the beta function from the beta function of the lattice design 

which is free from magnetic field errors is commonly referred to as a beta wave. The results 

of the derivation of a beta wave due to a small gradient error in a quadrupole 1s * 1151 

ap(s)= 1 
PM 2 sin 21rQ f 

q(s’)/?(s’) cos 2( A$ - aQ)ds’. (2.37) 

The beta function of the real lattice normalized to the beta function of the design lattice is 

denoted by p hp. The parameter q( ) s is the quadrupole strength associated with the kick of 

magnitude A6’ a particle sees at a transverse position 5: qx = Ad. Note that the denominator 

of the beta wave indicates a new set of resonances which must be avoided when quadrupole 

field errors are present. Half-integer values of the tune correspond to a beta wave of infinite 

magnitude. Along with an integer resonance, therefore, operating close to a half-integer 

resonance in an accelerator is a particularly dangerous condition. Regardless of whether 
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the particles are initially at a high oscillation amplitude or are in the core of the distribution, 

particles will grow in amplitude without bound and eventually be lost. 

In general, if a magnetic field error exists in an accelerator, the transverse equation of 

motion of a particle becomes inhomogeneous: 

d2X 
@ t K(s)x = g(x,s). 

The driving function, g( 2, s), is a force term which may be a nonlinear function of amplitude 

x and azimuth s. 

A Courant-Snyder coordinate transformation into the normalized coordinates of Equa- 

tion 2.18 along with a phase transformation will enable this inhomogenous Hill’s equation 

to be expressed as the equation of motion of a driven harmonic oscillator. By reducing the 

phase $(s) by Q such that 4(s) = 6 T/J(S), the equation of motion becomes 

d2xN 
-g-j- + Q’XN = -Q2 &d) g(xN, 4). 

The phase r$ now advances by 27r after each turn. In the (XN, 4) coordinates, the mathe- 

matical methods used to describe the motion of a driven harmonic oscillator become avail- 

able. The notion of a resonance between a particle’s tune and a harmonic amplitude of the 

driving term is the same as that of a simple harmonic oscillator. 

The driving force is expressed in terms of m multipole moments of the dipole field error 

using Equation 2.33. A magnetic field expressed in terms of normal multipoles ( assuming 

skew multipoles terms are equal to zero ) in one dimension is given by 

The first, second and third terms denote the dipole, quadrupole and sextupole moments of 

the field error AB, respectively. In general, the mth term denotes the mth order multipole 

moment of the field error. Each multipole moment can drive a particle into resonance if the 

resonant frequency of the driving term equals that of the frequency of the solution to the 

homogeneous Hill’s equation; 

XIV(~) = Acos(Q$ + 6). (2.41) 

Consider, for example, the resonance effects of a sextupole moment. The equation of 

motion expressed in terms of the bz moment is 
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a2xN 
w + Q’XN = 

Q2Bo s 
-(BP) PWb2dP (2.42) 

If the driving term on the right hand side of the equation has the same frequency as a par- 

ticle’s tune, a resonant condition will exist. The right hand side is a product of a sextupole 

moment and x&, both of which can be alternatively expressed as Fourier series in 4. The 

frequency of the driving term is a combination of the frequency 2Q expressed by xh and 

the harmonic frequency of b2,@. If the product b$ f has a nonvanishing pt h harmonic such 

that p f 2Q = Q, a resonant condition exists. The frequency p + 2Q = Q leads to the 

condition that the tune should not be an integer if one wants to avoid a resonant condition. 

The frequency p - 2Q = Q leads to the condition that the tune should not be a third of an 

integer.Pl 

In general, the equation of motion for a driven harmonic oscillator is well suited for dis- 

cussion using Hamiltonian techniques. Chapter 3 will concentrate on the Hamiltonian ap- 

proach to solving this equation of motion for the nonlinear driving force of the beam-beam 

interaction. 

2.3 THETEVATRON ASACOLLIDER 

In a typical colliding beam store, six proton bunches and six antiproton bunches circu- 

late in the Tevatron in opposite directions. A given proton bunch passes by an opposing 

antiproton bunch at twelve locations in the ring. The details of the electromagnetic beam- 

beam interaction which occur at these twelve crossing points will be reviewed in the next 

chapter, so suffice it to say here that the beam-beam interaction will cause a tune spread of 

particles in the distribution which may cause some particles to shift onto resonances. 

It was experimentally determined, for example, in the first Tevatron Collider Run (1987- 

1988) that the dominant factor limiting the luminosity was the beam-beam interaction. A 

“beam-beam limit” was reached in the Collider; the luminosity could not be increased by 

decreasing the beam emittance or by increasing the bunch intensity of the protons.121 In or- 

der to minimize the adverse effects of the beam-beam interaction, electrostatic separators 

were installed in the Tevatron. The separators are oppositely charged stainless steel par- 

allel plates which provide a transverse electrostatic field in the path of the particle. The 

electrostatic field causes particles of opposite charge to circulate on different closed orbits. 

The electrostatic fields in the Tevatron are in both transverse dimensions, causing closed 

orbits of the protons and antiprotons to wrap around each other in a double-helical fashion. 
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This ability to separate the beams in two dimensions is a unique capability of the Tevatron 

Collider. It proved to be a successful method of limiting adverse effects of the beam-beam 

interaction during normal collider operation. 

The separators are configured to separate the beams everywhere except at the location 

of the Colliding Detector Facility (CDF) detector located at the BO straight section and at 

the DO detector. In order to provide the highest luminosity at these locations, ‘low-beta’ 

insertions are added.151 Low beta insertions are composed of quadrupoles of a much larger 

focusing gradient than the quadrupoles used for focusing in the arcs. A low beta quadrupole 

in the Tevatron, for example, has twice the focusing gradient of a standard quadrupole, op- 

erating with a magnetic field gradient of 140 T/m at 1 TeV. Low beta quadrupoles are also 

much longer than quadrupoles in the arcs ( approximately 180 inches as compared to 66 

inches for a standard quadrupole) and thus have more than six times the focusing strength. 

Tevconfig Collider (RUN IA - Low Beta Lattice) 
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Figure 2.6: The horizontal (solid line) and vertical (dashed line) beta function at the CDF 
interaction region as specified by the design lattice of Collider Run IA. 

The advantage of greater focusing strength is seen by substituting the transverse rms 

beam size of Equation 2.21 into the luminosity expression of Equation 1.2. 
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(2.43) 

For a given emittance and bunch intensity, the highest luminosity will be achieved at the 

lowest beta. The strong focusing properties of the low beta insertion reduces the magnitude 

of the beta function at the collision point to less than a meter. The result of such strong 

focusing is that a transverse rms bunch size of approximately 1 mm in the arcs is focused 

to approximately 30 microns at the detector locations. 

It is of interest to examine the change in the beta function in a low-beta insertion. The 

beta function through a straight section is found by setting the focusing strength equal to 

zero in Equation 2.11 and solving for ,L3. 

I( = 0 : P(s) zz p* - 2cy*s + 0 y*)‘2 (2.44) 

The lattice parameters denoted by the asterick are defined at the collision point which is, 

by definition, located at the azimuthal location s = 0. During Collider Run IA, the beta 

function varied quadratically from approximately 0.35 meters at either the BO or DO inter- 

action points to 130 meters at the quadrupoles which marked the endpoints of the BO and 

DO straight sections. The variation of the beta function in the BO interaction region as calcu- 

lated from a model of the Tevatron is shown in Figure 2.6. The highest beta in the Tevatron 

(approximately 1100 meters) is reached at the defocusing low beta quadrupole locations in 

the low beta insertion. 

2.4 ACCELERATOR PARAMETERS DURING COLLIDER RUNS IA AND 

IB 

Collider Run IA ( 1992- 1993) and Collider Run II3 ( 1994- 1995) are characterized by op- 

erational accelerator parameters which are quite similar. An increase in the luminosity is ap- 

parent in Collider Run IB as the bunch intensities increase and operation of the accelerator 

continues to improve. 

Collider Run IA was split into two “low-beta modes” of operation in which the magni- 

tude of beta at both head-on collision points was changed. The first part of the run intended 

to collide protons and antiprotons at the BO and DO collision points with a 0.5m value of ,8*. 

The presence of a beta wave in the Tevatron resulted in a lower p* than the design value at 

both the BO and DO interaction points. The existence and consequences of the beta wave 

are discussed in the latter part of this section. The second part of the collider run attempted 
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to lower p* to 0.25m to further increase the luminosity. 

At the time of this writing, Collider Run IB has operated exclusively with a /3* of ap- 

proximately 0.35m. Current machine studies are testing the possibility of operating at a ,!I* 

of 0.25m in the latter part of Run IB. 

The experimental measurements which are presented in this dissertation were taken us- 

ing the 0.5m p* lattice of Collider Run IA and the 0.3.5m p* lattice of Collider Run IB. Con- 

sequently, the conditions of operation discussed here concern only those relevant parts of 

Run IA and Run IB. Typical values of operational accelerator parameters during Collider 

Run IA and Collider Run IB are listed in Table 2.1. 

Tevatron Accelerator Parameters 

Longitudinal Emittance 

Table 2.1: Tevatron accelerator parameters in Collider Run IA and Collider Run IB. 

The actual collider lattice in the 0.5m p* part of Run IA differed from its intended de- 

sign in that a beta wave existed in both transverse dimensions of the Tevatron. As shown in 

Equation 2.37, a small perturbation of the strength of a quadrupole from its design specifi- 

cation will produce a beta wave which modifies the beta function of the design lattice. The 

problem in the Tevatron occurred in the magnetic fields produced by the quadrupoles in the 

low beta insertions. The transfer constants which represent the actual field produced for a 

given current differed in the real accelerator from the design specifications. The difference 
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between the beta function as specified by the design lattice and the beta function which was 

actually present during Collider Run IA is shown for a section of the Tevatron in Figure 
2 7 1191 . . 

The perturbation of the strength of the low beta quadrupole is too large to be described 

exactly by Equation 2.37. A perturbative analysis is not valid in this case. i201 It should be 

noted that the beta wave was corrected for in Collider Run IB by adding “low-beta trims”; 

power supplies were installed which allowed independent control of upstream and down- 

stream low-beta quadrupoles to compensate for the gradient errors. 

Tevatron Lattice Parameters 

Lattice 

Parameter 

Symbol Run IA Run IB 

(units) BO DO BO DO 

Table 2.2: Tevatron lattice parameters in Collider Run IA and Collider Run IB. 

As Equation 2.37 indicates, a beta wave is directly proportional to the beta function at 

the location of the field error. The magnetic field error which produced the beta wave in the 

Tevatron occurred in a low beta quad which is at a high beta location. Peaks in the result- 

ing beta wave were approximately 50% greater than that of the design during the 0.5m ,8’ 

run. Note, though, that the value of the beta function at the two head-on collision sites was 

lower than the design value. This was a nice consequence of the beta wave. The measured 

luminosity obtained during the 0.5m ,/3* run was greater than what was estimated using the 

design lattice. 

Lattice parameters at the BO and DO interaction points for the 0.5 m ,8* lattice of Collider 

Run IA and the 0.35 m p* lattice of Collider Run II3 are listed in Table 2.2. 

The beta wave did cause some problems in operation though. When changing the tune in 

the Tevatron, it was found that the measured chromaticity also changed. Experiments which 

will be discussed in Chapter 5 indicated that the change in the measured chromaticity per 

tune unit using the 0.5m p* lattice was approximately 
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Tevconfig Collider (RUN IA - Low Beta Lattice) 
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Tevconfig Collider (RUN IA - Low Beta Lattice) 
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Figure 2.7: The horizontal and vertical beta wave in a section of the Tevatron. The vertical 
axis is the variation of beta from the design lattice. The solid line connects points calculated 
from a model of the Tevatron (Tevconfig) for Collider Run IA. Actual measurements of the 
beta function occurred at the points denoted by circles with error bars. 
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A& Y -= AQz 117 ;; - = 50. (2.45) 
Y 

To verify this dependence of the 0.5m /?* lattice on the tune, the change in chromaticity per 

change in tune was calculated for two different models of the Tevatron. One of the models of 

the Tevatron contained the design lattice only and the other lattice more closely reproduced 

the beta wave in the Tevatron. The chromaticity did not vary when changing the tune of the 

design lattice. The chromaticity did change, however, when it was calculated for different 

tune settings of the lattice describing the beta wave. The calculated results showed good 

agreement with the experimental results. The reason for the change in chromaticity in the 

lattice describing the beta wave could be seen in the beta function. The average beta around 

the ring did not vary largely when the tune was changed in the design lattice, but there was 

a large increase in the average beta around the ring when the tune was changed in the lattice 

describing the beta wave. [171 As indicated in Equation 2.32, if there is an increase in the 

average beta around the ring, the chromaticity will increase also. 
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Chapter 3 

THEBEAM-BEAMINTERACTION 

3.1 THEBEAM-BEAMFORCE 

A weak-strong model of the beam-beam interaction is used to define the motion of 

a “weak” or low intensity bunch colliding with a “strong” or high intensity bunch. A weak- 

strong picture of the beam-beam interaction translates in the Tevatron to an antiproton bunch 

colliding with a static electromagnetic field generated by a round, Gaussian, and short pro- 

ton bunch. Antiprotons, in a weak-strong model, are the main focus of attention as test parti- 

cles. Test particles differ from each other in that they have different amplitudes (a,, uy, a,). 

The proton intensity is assumed to be large enough that protons are unaffected by the weak 

electromagnetic fields generated by low intensity antiprotons. 

In the first approximation, the angular deflection a single antiproton experiences as it 

collides with a proton charge distribution does not depend on the longitudinal charge distri- 

bution of the protons. 1281 The transverse charge distribution is assumed Gaussian and round 

for the counter-rotating proton bunch. In cylindrical coordinates, the proton charge distri- 

bution is given by 

p(r) = z exp - 2 , [ I (3.1) 

where CY is the rms transverse size of the bunch, n is the number of protons per unit length 

and e is the proton charge. 

The electromagnetic force an antiproton experiences as it traverses a proton bunch is 

described by the Lorentz force: 

(3.2) 



where 1’ is a radial unit vector. A positive sign of the magnetic force term represents the 

force due to electromagnetic interactions with colliding protons; the beam-beam force. A 

negative magnetic force term corresponds to the Coulomb force between antiprotons in the 

same bunch; intrabeam scattering. The electric and magnetic fields counteract each other 

in the case of intrabeam scattering, but are additive in the case of the beam-beam force. 

The electric field, E,, and the magnetic field Bd are described by Gauss’ theorem and 

Ampere’s Law, respectively. 

vd4el c 1 
4 = 2= 7- (1 -e-S) 

The kick Ar’ an antiproton receives from an interaction force F, is 

Ar’ = - - L ‘F 
W4 e(&) r’ 

(3.3) 

(3.4) 

(3.5) 

where L is the proton bunch length. The beam-beam kick is found by substituting the beam- 

beam force into the kick expression: 

AT’= -- - 2Nrp ’ (1 - exp (-r2/2a2)]. (3.6) 
Yrel f 

The classical radius of the proton is denoted by rp and N is the total number of protons in the 

bunch (N = nL). Equation 3.6 is the beam-beam kick for a “head-on” beam-beam colli- 

sion; the antiproton is oscillating about the same closed orbit as the centroid of the opposing 

proton bunch. 

Figure 3.1 describes the beam-beam kick as a function of the oscillation amplitude of 

an antiproton normalized to o of the opposing proton distribution. If the antiproton collides 

at a normalized amplitude which is much less than one, the kick is linear in r. The parti- 

cle experiences an “electrostatic lens” force which, unlike a magnetic quadrupole, focuses 

in both the horizontal and vertical directions. When the normalized amplitude is approxi- 

mately equal to one, the force on the antiproton becomes highly nonlinear. As shown in the 

figure, the beam-beam kick decreases like 1 /r at large amplitudes. 

For a small amplitude particle in one dimension, z = r < o and the beam-beam kick 

acts like a thin lens of focal length f, where 

1 Ax’ 

7=2. 
(3.7) 
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Figure 3.1: Angular deflection due to a proton-antiproton electromagnetic interaction as a 
function of the oscillation amplitude of a particle. The oscillation amplitude is normalized 
to the rms 0 of the opposing charge distribution. A l/r asymptotic dependence is observed. 

Substituting for the focal length in Equation 2.25 (remembering Q = l/f), the tune shift 

of a small amplitude particle due to the beam-beam kick is 

(3.8) 

where ,O is measured at the beam-beam crossing point. The beam-beam tuneshift parameter 

t is an important scale factor which parameterizes the strength of the beam-beam kick. For 

non-round beams, the beam-beam tuneshift parameter 1s - [281 

(3.9) 

3.2 A HAMILTONIAN ANALYSIS 

A two-dimensional Hamiltonian of a weak-strong colliding beam system is defined as 

wv~, y,py; s) = ;(Pz + 1k2) + ;o( + Kyy2) + V(z, y) F S[s - (27&Z)] (3.10) 
l=--00 
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where p, and p, are the canonical momenta associated with a particle’s transverse positions 

in the horizontal and vertical planes, respectively. l32l124l The summation over 1 is a sum- 

mation of the periodic crossing points in which a particle receives a localized beam-beam 

kick. 

The beam-beam potential is described by Poisson’s equation V2V = -P/CO with the 

constraint that V -+ 0 as Z, y t 00. 1331 In terms of z and y, the transverse charge distribu- 

tion of Equation 3.1 is rewritten: 

f&Y) = 2?iyo t Y 
T+;(-$+-$)]. (3.11) 

The beam-beam potential due to this charge distribution is 

l-exp -A--& [ 1 
J&&/5+ * 

(3.12) 

An integration over the bunch length has occurred in the above expression, as evidenced by 

a change in the particles per unit length n to the total particles in the distribution N. 

The symmetry of the potential expression dictates that only even-ordered resonances 

will be driven in head-on collisions. An expansion of the exponential term in the potential 

gives terms of order 22ny2m, where n and m are integers. In other words, In,1 f lnyl of 

Equation 2.24 must be equal to an even integer. Just like any nonlinear resonance driving 

term (caused by sextupole magnets or octupole magnets, for example), these driving terms 

excite resonances whenever the betatron tunes satisfy the resonance condition described by 

Equation 2.24. 

Odd-ordered resonances require the symmetry of the potential to be broken, and are 

present when the beams are separated transversely or when there is dispersion or a crossing 

angle at the collision point. If there is a transverse separation between the closed orbit of 

the particle and the centroid of the colliding particle distribution, the potential is redefined 

as 

v(x,y) = %/o-dt 
l-exp -w-e 

[ I 
JG+/~y ’ 

(3.13) 
re 

where d, and d, denote the horizontal and vertical separations of a particle from the centroid 

of the bunch distribution. 

At a single crossing point, the equations of motion described by the Hamiltonian of 

Equation 3.10 are 
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g + K,(z) = -g S[s]: 2 E x,y. 
z 

(3.14) 

THEUNPERTURBED HAMILTONIAN 

Consider the simple case of a one-dimensional system (y = 0) in which the beam-beam 

potential is equal to zero. Hamilton’s equation dH/i3p, = x’ yields the relation p, = 2’ 

and confirms the conjugate coordinate of the position x as z’. A generating function is used 

to canonically transform the Hamiltonian into a new Hamiltonian using action-angle coor- 

dinates (J’, 8). The new Hamiltonian has the advantage of being independent of the longi- 

tudinal coordinate s if one introduces a periodic coordinate, GZ, which is related to & of 

Equation 2.12 by 

The generating function used in the canonical transformation is given byI ‘1 

G,(x, &; S) = -$-[tan F, + %I, where 
z 

This generating function produces the coordinate transformations[2 ‘1 

x = JZXcos(&++,) (3.17) 

(3.16) 

3’ = - I t Q,> t Q, cos(liz t h,] , 

(3.18) 

and the new Hamiltonian is 

dG, QzJz Hl = H(x, 2’; s) + - = - 
ds R * 

(3.19) 

The parameter R is a scaling of the longitudinal parameter s. By resealing the Harniltonian 

using 8, the parameter R is eliminated. Recalling that d/de = Rd/ds, the Hamiltonian is 

I&(J,,#J,;~) = H1(J,:&; s) x R = Q,J,. 

The equations of motion are given by 

(3.20) 

dH1 
4x = aJ, - = Qz:. (3.21) 
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(3.22) 

where the dot notation designates a derivative with respect to 8. With no beam-beam inter- 

action, the amplitude of a particle at a given location remains constant: J, = constant. J, 

is therefore equal to the area enclosed by the ellipse in (2, x’) phase space. The invariant 

single particle emittance is closely related to the invariant J,; J = A2/2, where nA2 is the 

invariant described in Equation 2.17. 

An equivalent derivation holds for both transverse degrees of freedom. The unperturbed 

part of the Hamiltonian described by Equation 3.10 is thus 

H(tf, 8; 0) = Q,Jz + QyJy = cj. i 

This system is equivalent to a system of two uncoupled harmonic oscillators. 

(3.23) 

THE RESONANT HAMILTONIAN 

It is of interest to examine a particle’s motion due to a single resonance, that is, to isolate 

part of the Hamiltonian when a particle’s tune Q is close to a value satisfying nQ x p, where 

n and p are integers. The resulting “resonant” Hamiltonian is used to delineate a particle’s 

motion when its tune is close to a resonance of order n. With the inclusion of the beam-beam 

perturbation, the resonant Hamiltonian is of the form132112* 

(3.24) 

The first term in the Hamiltonian describes the linear motion of a particle near a resonance 

of order n. The last two terms are scaled by the linear beam-beam tuneshift parameter; both 

terms are due to the beam-beam interaction. The term U(f) is the amplitude detuning func- 

tion which describes the variation of tune with amplitude due to the beam-beam interaction. 

The term Vn(J) is a beam-beam “resonant excitation” term and is known as the resonance 

width function.[32] Each of these terms will be discussed in more detail in the next two sec- 

tions. 

An important property of a single resonance model is found from Hamilton’s equation 

of motion describing a particle’s amplitude. I2 ll Motion dominated by a single resonance is 

given by 

(3.25) 
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The dot denotes a derivative with respect to 8. Equation 3.25 points to a relation between 

the two transverse amplitudes: 

c + : = constant 
2 

or, equivalently, 

p t $ = Cl t c2.@) 
I 

(3.26) 

(3.27) 

where cl and c2 are constants. A particle’s motion plotted in amplitude space (Jr, J,) fol- 

lows a straight line. Motion in amplitude space is bounded or unbounded depending upon 

the signs of n2, and ny. Bounded motion occurs when one of the components of n’ are neg- 

ative; when the resonance is a “difference resonance”. A growth in a particle’s horizontal 

amplitude, for example, will lead to a decrease in a particle’s vertical amplitude. Unbounded 

growth in amplitude occurs when both components of n’ are positive; when the resonance 

is a “sum resonance”. This relation has led to a popular assumption that sum resonances 

are dangerous resonances and that difference resonances are safe. What is not considered 

in this assumption is that even in the case of bounded motion in amplitude space, a particle 

still has the potential of being lost due to a large amplitude growth in one dimension. 

3.3 THEBEAM-BEAMTUNE SHIFT 

In the absence of all resonances (n = 0), a particle’s tune shift due to the beam-beam 

interaction is derived from the amplitude detuning function U(j) in the resonant Hamil- 

tonian. This amplitude detuning function is obtained from the beam-beam potential using 

the action-angle coordinate transformation of Equation 3.15. In the case of round beams, 

a, = gy is 0 and the beam-beam potential in terms of action-angle coordinates is given by 

v(j’, 8) = 7 Jrn dt 
0 

- (dm COS $k - dk) 2 

202 + t I) . (3.28) 

The product over k represents the two transverse dimensions; (1,2) 3 (2, y ). 

Consider the case of a non-zero separation d in the horizontal direction. Equation 3.28 

is rewritten as 

i 

1 - exp 

[ 

-U )‘- u$cos~$~]) . (3.29) 
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The separation, dN, is a normalized horizontal separation (dN s d/a). The variable of 

integration has been changed to U, where u s l/(1 + (t/a2)). The beam emittance E is 

substituted into the expression (E = a”/p), where the beam emittance of Equation 2.20 is 

defined at la. 

The detuning function of the resonant Hamiltonian is found by averaging the beam-beam 

potential over all angles. In one dimension, the detuning term in the resonant Hamiltonian 

is 

(3.30) 

The beam-beam tune shift is obtained from the derivative of the detuning term. This is seen 

by examining Hamilton’s phase equation of motion. In the absence of resonances, 

-=-= d$ dH Q-[""ay' 

dB dJ 

or, equivalently, the shift in tune is 

(3.31) 

(3.32) 

Horizontal and vertical tune shifts for round beams in the presence of a non-zero horizontal 

separation are given by WI 

AQx 1 -=- 
J tx &To 

2*dqh ‘OS’ 
ax [ cm 4 - * 

, (1 -exp [-2 (&cosqh- $)2]) (3.33) 

and 

AQ, 1 -=- 
tY J 2n 0 

2sdq5 ‘Os2’ c (1 -exp [- (2o,cos?)+ *)I). (3.34) 
QyCOS2 4 t 4 

For convenience, the parameter Q has been used in the above expressions, where 

Jk 
ak=z7 

(3.35) 

and k - 5, y . Horizontal and vertical tune shifts for various beam separations in the hor- 

izontal plane are plotted in Figure 3.2. Tune shifts are plotted as a function of normalized 

particle amplitude, a. The amplitude of a particle is defined in terms of action-angle coor- 

dinates as 
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Figure 3.2: Horizontal and vertical tune shift due to beam-beam detuning in the presence of 
horizontal separation. A round beam approximation is used. 
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Normalizing to the transverse beam size of the proton distribution, 

(3.36) 

(3.37) 

and is in units of 0. 

Note that horizontal and vertical tune shifts are scaled by the beam-beam tuneshift pa- 

rameter. Maximum tune shifts for any amplitude particle occur in the case of head-on col- 

lisions. In head-on collisions, small amplitude particles are shifted in tune by the largest 

amount. The shift in tune decreases nonlinearly with particle amplitude. Amplitude depen- 

dent tune shifts lead to a spread in particle tunes for a distribution of particles. The antipro- 

ton tune spread characteristic of one head-on collision in the Tevatron during Collider Run 

IB is mapped in Figure 3.3 as a “beam-beam tune footprint”. In the figure, the tune which 

is unperturbed by the beam-beam interaction ( referred to as the base tune in this work ) is 

marked with a cross mark. Zero amplitude antiprotons are shifted linearly in tune by ap- 

proximately 0.006 tune units both horizontally and vertically. A typical Collider Run in the 

Tevatron operates with two head-on collisions and thus with a linear tune shift 6 of 0.012. 

The beam-beam interaction redefines the working point for particles with unperturbed 

tunes into a working area in tune space. For good beam lifetimes and stable operating con- 

ditions, it is desirable to keep the entire area in which particles are spread in tune away from 

destructive resonance lines in tune space. 

It is interesting to note that the amplitude dependent tune shift which results from the 

beam-beam interaction is predicted to have a stabilizing effect on a particle in resonance. 

Consider a situation in which a small amplitude particle is driven into resonance and expe- 

riences amplitude growth. The tendency of the particle to take on different tunes as it grows 

in amplitude characterizes a “detuning” effect. The rate of a particle’s amplitude growth 

will decrease as the particle is shifted in tune off of a resonance. The detuning effect brings 

the destructive effects of the resonance under control. This is an important aspect of the 

beam-beam force. The phase space of a particle in the presence of the beam-beam inter- 

action is always a closed phase space; a chaotic region which may exist will not extend to 

infinity. Previous beam-beam studies have examined the onset of resonance islands in phase 

space and the overlap of resonance islands which leads to chaotic motion. Surprisingly, typ- 

ical strengths of the beam-beam interaction in hadron colliders are much smaller than that 

predicted for the onset of chaotic motion in a particle’s phase space. Resonance overlap 
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Figure 3.3: Beam-beam tune footprint for one head-on collision in the Tevatron Collider. 
The footprint was calculated analytically for antiprotons with oscillation amplitudes ranging 
from 0 to 5~. 

has been observed when an external modulation, such as a tune modulation, is added to the 

beam-beam model.124112311221 

In a real collider, though, beam stability in the presence of the beam-beam interaction is 

not observed. It will be shown in this work that higher background rates are driven by the 

beam-beam interaction in the Tevatron when the operating tune is near 7th and 9th order res- 

onances. The SPS collider at the European Laboratory for Particle Physics (CERN) found 

destructive beam-beam effects (a decrease in beam lifetime) due to the 16th order resonance. 

Higher background rates were also measured in the SPS due to an increased beam-beam in- 

teraction effect for proton and antiproton emittances of unequal size. i2@ A long range beam- 

beam experiment performed in the Tevatron collider showed an increased beam loss when 

the proton and antiproton bunches were separated by about 1.5 u to 2.0 o.I~~] 

3.4 AMPLITUDE OF A RESONANCE 

As expressed in Equation 3.28, the beam-beam potential is an even function in angle. 

In one dimension, the Fourier series expansion of the beam-beam potential is 
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V(Jb> = 2 V,(J)cosnA (3.38) 
n=l 

where the summation over n includes all orders of resonances. In an isolated resonance 

model, a single resonance of order n is accepted as the dominant resonant term. Higher or- 

der terms are neglected as contributing to a particle’s resonant motion. The resonant width 

function, Iyn( J) of Equation 3.24, represents the amplitude of the dominant resonant exci- 

tation term in the beam-beam potential. 

The amplitude of a beam-beam resonant driving term is obtained from the derivative of 

the beam-beam potential (F = - OV). The Fourier series expansion of beam-beam driving 

terms of order n is given by 

(3.39) 

The amplitude of a resonance of order n is the nth Fourier component of its Fourier series 

expansion. This amplitude is the derivative of the resonance width function with respect to 

J. 

(3.40) 

Substituting the beam-beam potential of Equation 3.28 into the above expression gives the 

amplitude of a resonance due to the beam-beam interaction: 

v,‘(a) = $JuZ’@ CoSn#Jcos4 
CY (co, d - $) 

(1 -exp (-2 [~coso- t]*)) , (3.41) 

where 5 is the linear beam-beam tuneshift parameter and the prime denotes a derivative with 

respect to J.12q 

For head-on collisions, the amplitude of the resonance for various even-ordered reso- 

nances is shown in Figure 3.4 and 3.5. Both figures normalize the resonance amplitude to 

the beam-beam tune shift parameter. Figure 3.4 displays the absolute value of the resonance 

amplitude in the more familiar logarithmic scale seen in much of the literature (See Evans 

(1983) or Peggs (1986), for example). Figure 3.5 is the resonance amplitude plotted on a 

linear scale. It is evident in both of these figures that the absolute magnitude of the reso- 

nant component of the beam-beam perturbation is greater for lower order resonances than 

for higher order resonances. This is true for a particle at any oscillation amplitude. 
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Figure 3.4: Absolute value of the amplitude of a beam-beam driven resonance of order n 
for head-on collisions. A round beam approximation is used. 
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Figure 3.5: Amplitude of a beam-beam driven resonance of order n for head-on collisions. 
A round beam approximation is used. 
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Figure 3.6: Absolute value of the amplitude of a beam-beam driven resonance of order n 
for a beam separation of 20. A round beam approximation is used. 
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Figure 3.7: Amplitude of a beam-beam driven resonance or order n for a beam separation 
of 20. A round beam approximation is used. 

41 



0.03 
Horizontal Separations: 0.5a,la.l.5~,2o,2.5a,3.cr and 4a 
III, I,,, I,,, (I,, ,111 I,,, 

0.01 

V;(J) 15 
0.00 

-0.02 

-0.03 
0 1 2 3 4 5 6 

Particle amplitude (a) in units of (T 

Figure 3.8: Amplitude of a beam-beam driven resonance of 7th order for different horizon- 
tal separations. A round beam approximation is used. 

A non-zero separation introduces resonant components of the beam-beam force which 

drive odd-ordered resonances. For a separation of 20, the resonance amplitude is plotted for 

some odd and even-ordered resonances in Figure 3.6 and Figure 3.7. Although driving terms 

from lower order resonances have a maximum oscillation amplitude which is larger than 

higher order resonances, it is no longer possible to generalize that the amplitude of a beam- 

beam resonant driving term is larger for lower order resonances. A particle oscillating at a 

given amplitude may in fact see a larger resonance excitation near a higher order resonance, 

The dependence of resonance amplitude on beam separation is shown in Figure 3.8 for 

a seventh order resonance. 

3.5 BEAM-BEAM SIMULATIONS 

In order to predict a particle’s behavior in the presence of the beam-beam interaction 

in the Tevatron, a simulation code was developed to calculate the predicted position and 

phase of a particle after a designated number of turns. The simulation code is descendant 

from simulation code originally written by Werner Herr.[341[35] 
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The model used for the simulation is concerned only with particle motion due to the 

beam-beam interaction. The motion of a particle between beam-beam crossing points is 

assumed to be linear motion and coupling between the two transverse planes is not taken 

into account. The particle experiences an angular kick due the beam-beam interaction at 

each beam-beam crossing point. The simulation code is summarized below. 

Given a particle’s initial position and phase at a location 1 in a collider, a linear propa- 

gation to location 2 is described by 

x2 Xl 

4 
= M12 

Xi 

:I il 

Y2 Yl . 
(3.42) 

Yi Yi 

The transfer matrix M is defined by the lattice parameters in the horizontal and vertical 

planes at the corresponding locations [9]: 

(3.43) 

where m, and my are given by Equation 2.13. The simulation assumes the motion of a par- 

ticle from one beam-beam collision point to the next is a linear motion as described above. 

The phase advance from a beam-beam crossing point (1) to the next crossing point (2) is 

given by 

A$ = $2 - $1 = 2nAQzl. (3.44) 

At each beam-beam interaction point, a beam-beam kick of magnitude AZ’ and Ay’ is 

added to a particle’s phase. The beam-beam kick expression of Equation 3.5 is generalized 

to non-round beams in the simulation. For computational purposes, the vertical kick in the 

simulation is given by 

for a > b .[38] The parameters a and b denote the horizontal and vertical bunch sizes of 

the colliding proton distribution. The function w(A + iB) is the complex error function. 
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The horizontal kick is given by the imaginary part of the square brackets. The use of an 

algorithm to calculate the complex error function using an asymptotic approximation and 

Pade approximations decreased computation time significantly.i3q 

When a non-zero beam separation is present at a collision point, care must be taken in 

calculating the beam-beam kick.i 36] Consider a beam-beam collision with a non-zero sep- 

aration d in the horizontal plane. The beam-beam potential of Equation 3.13 is 

V(x,y) = c/d - e 
- $!i$+& ( > 

Jc20: + q2a; + t) 
where C = Nr,/y. The kick from this potential is 

- *+z$& ( > = C(x - d) J dt 
Jo:; + i)3/2(29 + ty’ 

(3.46) 

(3.47) 

For zero amplitude particles, this expression becomes 

d2 

Ax’ = Cd dt J, -TqTt ( > 

(aa; 1t)3/2(2cT; + ty 
(3.48) 

which is merely a dipole kick. This dipole kick will result in a shift in the closed orbit of 

the particle. In order to calculate a particle’s tune, it is necessary to calculate the gradient 

of the kick around the closed orbit of the particle, i.e. x=0. The approximation of Equation 

3.8, Q = Ax’/x, which was used in the head-on collision case is no longer valid. The valid 

expression is 
Q _ ww -- 

dx * 
(3.49) 

The change in a particle’s closed orbit due to the constant dipole kick is negligible for 

small kicks, but the change is large for sizeable kicks. A large dipole kick will change a par- 

ticle’s reference system. A subtraction of the dipole kick is necessary to bring the reference 

system back. The beam-beam kick used in the simulation code is obtained by subtracting 

out the dipole kick contribution; 

Ax;,~,~ = Ax’(y + d) - Ax’(d). (3.50) 

This beam-beam kick expression will give a correct calculation of the beam-beam tune shift 

of a particle. If the dipole contribution is not subtracted, small amplitude particles will as- 

sume much larger amplitudes. These particles will then start betatron oscillations with larger 
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amplitudes than their original amplitudes and start to sample a different amplitude of the 

opposing beam. In reality, the particles oscillate with the same betatron amplitudes but at 

different closed orbits. The tune change is thus 

and 

AQaq=C; (x--d+t 
( 

,-(Eg+z$) 
424 + t)3/2(2a,2 + t)1/2 (3.51) 

aQmq=cJdt 
,-(*+&TJ ,-(~+s$kJ 

J(2o; + t)3/2(2$ + ty -z(x-d)2 J dt 
42c; + t)5/2(2oyZ + t)1/2 

(3.52) 

For x = 0, the linear tune shift is 

- 
a&ccq=cJdt 

( &+z$ > 
J(20; + t)3/2(20,2 + ty - J 

- 2%+& ( > 
2Cd2 dt 

)/(20; + qq2a; + t)‘/2 
(3.53) 

The first term is the well known classical part. The second term can cause the tune shift to 

become negative after a certain separation d. 

Figure 3.9 illustrates the beam-beam tune shift vs. separation as computed by the simu- 

lation code. The horizontal and vertical tune shift due to one beam-beam collision is shown 

for a small amplitude (O.OOla,, O.OOla,) and a large amplitude (2a,, 20,) particle. The op- 

erating tune for the above simulation runs was in a “resonance free” region of tune space; a 

region absent of lower order resonances. 

It is of interest in this work to compare beam-beam simulations to particle losses. In 

this case, the absolute position of a particle at a given location in the ring is important. The 

orbit offset due to the dipole kick which is subtracted from the beam-beam kick during par- 

ticle tracking must be taken into account. The dipole kick causes a particle to orbit on a 

new closed orbit. All amplitude particles in a particle distribution are kicked equally by the 

dipole kick. It is sufficient to calculate the additional orbit offset which results from the 

dipole kick and add this orbit offset to that measured during tracking.141 The closed orbit 

offset is calculated using Equation 2.35. 
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Figure 3.9: Simulation results of the tune shift of a small and large amplitude particle in the 
presence of a non-zero horizontal separation. 
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Chapter 4 

EXPERIMENTALMETHODSOFMEASUREMENT 

4.1 MEASUREMENT OF THE TUNE 

Figure 4.1: Tune spectrum measured from horizontal Schottky plates in the Tevatron. The 
top picture is the tune spectrum of a proton beam. The bottom picture displays a tune spec- 
trum during a colliding beam store. Two peaks are evident due to coupling between the 
horizontal and vertical motion of the beam. 

A measurement of the tune of protons in the Tevatron is obtained using a Schottky De- 
tector System. The detector consists of opposing one meter long plates in the beam pipe 



which are electrically in parallel with an inductor. The Schottky assembly is tuned to pro- 

duce a resonant circuit frequency at 21.4MHz .l 451 The output signal of the circuit assem- 

bly is fed into a spectrum analyzer for a specified length of time. A Fast Fourier Transform 

of the time domain signal is then calculated. The signals of Figure 4.1 are the resultant tune 

spectrum obtained during a proton store and for a colliding beam store. The horizontal axis 

is in tune units labelled as ords (orders or revolutions); 1 ord = 47,7 13.15 Hz. The vertical 

axis is the power spectrum of the beam in units of dB. 

The relation A f At = 1 determines the resolution of the tune measurement. The length 

of time data is recorded, At, is the inverse of the resolution bandwidth of the detector. Un- 

der normal operating conditions of the Collider and during the beam-beam experiments dis- 

cussed in this work, At is 84 msec; data is read for approximately 4000 turns. This corre- 

sponds to Af = 12 Hz or a tune resolution of approximately 0.0003. The tune signal on the 

spectrum analyzer is broadened, though, by the tune spread of particles due to the non-zero 

chromaticity of the bunch distribution. Tune signals in the case of two colliding bunches 

are also broadened by the amplitude dependent tune spread caused by the beam-beam in- 

teraction. 

The Tevatron Schottky detector was so named because it was designed to measure trans- 

verse Schottky signals; signals arising from the incoherent motion of particles in a circu- 

lar accelerator. Historically, measurements of Schottky noise on unbunched beam in the 

CERN ISR led to the powerful technique of stochastic cooling.l46l Bunched beam situa- 

tions, though, make measurements of Schottky noise much more difficult. In fact, signals 

from the Schottky detector in the Tevatron are dominated by coherent motion of the proton 

bunches rather than by incoherent Schottky noise. The power spectrum of coherent motion 

is proportional to the the square of the number of particles in the distribution. Incoherent 

motion gives a power spectrum which is linearly proportional to the number of particles in 

the distributi0n.I 461 The existence of noise at the betatron sideband frequencies produces a 

response of the beam which has much greater power than the magnitude of a Schottky sig- 

nal. Modulated power supply ripple, for example, has been shown to be a source of noise 

which drives coherent motion of protons in the Tevatron. Power supply ripple has been mea- 

sured to have a strong effect on transverse bunch motion and the resultant tune spectrum. 1471 

4.2 BACKGROUND LOSSES 

The most sensitive loss monitors to measure proton and antiproton background losses in 

the Tevatron are located at the CDF and DO detector facilities in the ring. The loss monitors 
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Figure 4.2: A sketch of one half of the CDF detector. The detector is axisymmetric about 
the Interaction Point. The longitudinal location of the Bunched Beam Counters is specified. 

at CDF are described. 

As indicated in Figure 4.2, the loss monitors are located at a distance of 6 meters from 

the east and west sides of the main CDF detector. r4’l A scintillating material connected to 

a photomultiplier tube is used for particle detection. An array of scintillators, as sketched 

in Figure 4.3, surround the beam pipe. t491 

A particle passing through a scintillator on both sides of the detector is counted as a lost 

particle. The east and west loss monitors are therefore set up in coincidence with a 40 ns 

time delay on the downstream detector to account for the time of flight of the particle across 

12 meters. 

If a discriminated signal of particle losses from both the east and west loss monitors is in 

coincidence, the output is sent to a frequency to voltage convertor yielding a loss rate in units 

of Hz. Since the detectors cannot count scintillator hits at a frequency which is higher than 

the 3.5 microsecond delay between bunch collisions, the highest rate for detecting particle 

losses is 280 kHz. The saturation level of the loss monitors used to measure particle losses 

discussed in this work, though, were set for a dynamic range of 100 kHz. This saturation 

level was chosen to give a good resolution signal for typical background loss levels during 

a store. 

It would be difficult to estimate the absolute number of particles lost from a bunch 

using the loss monitor data. The loss monitor will give the same signal for one particle hit- 

ting the bunched beam counters (BBC) directly or for many particles hitting the BBC. The 
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Figure 4.3: Transverse View of a Bunched Beam Counter at CDF. 

discriminated signal does not provide sufficient information to calibrate the loss signal to the 

actual number of particles which hit the BBC. A statistical error estimate therefore becomes 

difficult. One can only measure background losses relative to stable or low loss operations. 

An estimate of the error in background losses is hence defined by the fluctuations in the 

readback of the background loss monitors during stable operations when the background 

losses remain relatively constant. 

4.3 LUMINOSITY 

The luminosity at the CDF and DO interaction points is monitored using the bunched 

beam counters gated to detect inelastic collisions. The counters are gated to count as a col- 

lision only particles which arrive at the east and west counters within a gated window of 

time. At CDF, a 30 nsec gate centered around a 20 nsec ( time of flight ) delay after each 

proton/pbar bunch crossing is used to count collisions. The circuit is otherwise equivalent 

to the loss monitor circuit. 

CDF used the experimental results of a measurement of the inelastic cross section at 

546 GeV in the CERN UA4 detector to make an estimate of the inelastic cross section in 

the Tevatron.[501 Knowledge of the cross section enabled CDF to define a luminosity cal- 

ibration. The inelastic cross section is estimated to be 46.8 mb for the BBCs, defining a 

luminosity of 1 .OE30 cmm2sece1 every 46.8 kHz. Since the typical luminosity for a given 
store is close to 5.OE30 cm-2sec-1, the signal from the luminosity monitor is typically much 
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higher than the background rate. The large count rate along with a known inelastic cross sec- 

tion enables a statistical error to be calculated. The statistical error is the square root of the 

number of collisions. The number of collisions (or counts in the monitor) is the measured 

luminosity multiplied by the calibration factor of (46.8 kHz /l.OE30 cmT2secm1). When the 

statistical error in the measurement is compared with the fluctuations in the readback of the 

luminosity signal over a short period of time (to eliminate possible effects due to lifetime 

decays), it is found that the fluctuations in the readback of the monitor is the largest source 

of error in the measurement. This will be seen in more detail in the next chapter. 

4.4 BUNCH INTENSITIES AND LONGITUDINAL BUNCH LENGTH 

beam pipe 

Figure 4.4: The Resistive Wall Monitor in the Tevatron. 

The bunch intensity and the longitudinal bunch length of individual proton and antipro- 

ton bunches is measured using a fast sampling circuit known as the Sampled Bunch Display 

(SBD). The input signal of the SBD is the measured voltage across a resistive wall monitor 

in the Tevatron. 

The resistive wall monitor is sketched in Figure 4.4. A 1 mm nonconducting gap be- 

tween two beam pipe segments forces the image charge to follow a path of least resistance 

through a set of eighty 120 ohm resistors which are connected in parallel. A ferrite material 

surrounds the gap, providing a large inductance and preventing high frequency components 

of the current from travelling along the outer conductive casing of the resistive wall monitor. 

The instantaneous voltage across the resistive wall monitor is fed into the SBD. The 

SBD utilizes a large bandwidth A/D oscilliscope capable of a sample speed of 0.5 11s. The 
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output signal of the SBD is as indicated in Figure 4.4.[531 

Figure 4.5: The Sampled Bunch Display. The 19 nsec divisions on the horizontal axis mark 
the edges of the main bunch and neighboring satellite bunches. 

The rms of the distribution is the measured bunch length. An integration of the area of 

the distribution is the measured bunch intensity. 

The precision of the SBD measurement is important for the calculation of luminosity 

using accelerator parameters. I50 A 5% uncertainty in the measured intensity of one bunch 

translates into a 10% uncertainty in the measured luminosity of two colliding bunches. In 

Collider Run IA, the agreement between the total bunch intensity measured by the SBD to 

the total DC current measured using a DC current transformer in the Tevatron was within 

approximately 5%. The precision of the SBD was improved during Collider Run IB.[531 

The agreement between the SBD and the DC current transformer is now within 1%.[541 

The error in the measurement of the longitudinal bunch length is mainly due to limita- 

tions of the A/D oscilliscope. i5 ll It is estimated that the longitudinal bunch length error was 

of the order of 5% in Collider Run IA. The estimated error in the longitudinal bunch length 

using the Run IB SBD is approximately 3%.[541 
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Figure 4.6: Sketch of a flying wire assembly. 

4.5 TRANSVERSEBEAM SIGMAANDBEAMEMITTANCE 

THE FLYING WIRES 

As discussed in Chapter 2 (Equation 28), a measurement of the transverse beam size is 

necessary to calculate the invariant beam emittance. In the Tevatron, flying wires are used 

routinely to measure the transverse beam profiles in both the horizontal and vertical planes. 

A sketch of the flying wire assembly is shown in Figure 4.6.1551 

A flying wire is a 25 micron carbon filament which moves at a constant velocity through 

the passing proton and antiproton bunches. Scintillators, located downstream from the wires, 

detect secondary particles which are produced when a proton or antiproton collides with the 

wire. The scintillator is connected to a photomultiplier tube to measure the light intensity. 

A transverse beam profile is obtained by plotting the measured light intensity vs. the wire 

position. The rms of the light intensity data is then used as a measure of the Gaussian rms 

beam sigma. 

Knowledge of the momentum spread of the bunch is also necessary to calculate the beam 

emittance at a non-zero dispersion location in the ring. Hence two flying wires are used in 

the horizontal plane, providing two simultaneous equations to solve for the unknown beam 

emittance and momentum spread. A typical profile obtained from the two horizontal and 
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Figure 4.7: Transverse Profiles of a proton (top row) and antiproton (bottom row) bunch 
as measured by the flying wires. Light intensity vs. position are measured for the vertical 
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the measured data and the dashed line is a Gaussian profile corresponding to the rms of the 
light intensity data. 
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one vertical flying wire for a proton and antiproton bunch is shown in Figure 4.7. A Gaus- 

sian profile corresponding to the calculated rms of the data is plotted along with the mea- 

sured light intensity. 

The error in the flying wire measurement of sigma is difficult to estimate.15@ A discus- 

sion of some of the sources of calibration errors would include the following: 

- The rms sigma of the transverse profile is found to be a function of beam position. The 

effect is estimated to produce a 5% to 10% variation in the calculated sigma. I571 

- The profile obtained in the Tevatron is dependent on the direction of the fly sweep. 

The calculated sigma from fly sweeps in the ‘forward’ and ‘reverse’ fly directions differ 

by approximately 3.0%. i581 The reason for this systematic error in the measurement is at 

present unknown. 

The result of such a large uncertainty in the absolute calibration of the flying wire leads 

one to place importance on relative measurements of beam sigma only. Absolute measure- 

ments are difficult to realize. To compensate for the directional fly sweep problem, the av- 

erage of two consecutive fly sweeps are used for every measurement of sigma in this work. 

As Equation 2.28 indicates, the uncertainty of the measured beam sigma leads to an un- 

certainty in the measured beam emittance. This uncertainty is compounded by the difficulty 

in obtaining precise measurements of the beta function and the dispersion at the location of 

the flying wires. 

THE SVX AT CDF 

A measure of the transverse overlap of two colliding particle distributions at the BO 

interaction region can be obtained using the silicon microstrip vertex detector ( the CDF 

SVX ).159l The SVX is composed of 4 radial layers of silicon strips which surround the 

beam pipe as shown in Figure 4.8. It was designed to track in the cylindrical (r, (b) plane 

in order to link tracks in the Central Tracking Chamber to interactions occurring in regions 

close to the beam pipe. The SVX thus attempts to separate multiple interactions which may 

not be readily apparent in the Central Tracking Chamber. 

The design of the SVX to make measurements in the (r, 4) plane gives it the capability 

of measuring the transverse overlap of colliding proton and antiproton bunches. In other 

words, the SVX is able to make a measure of 0 in the luminosity relation 

L = NlN2 
47ru2 . 

Note that this luminosity relation is derived in Equation B.4 of Appendix B. 

(4.1) 

55 



Figure 4.8: The SVX detector at CDF. 

The SVX measures the rms transverse width of the luminosity distributior#~. In terms 

of individual proton and antiproton bunch sizes, the SVX measures a grms which is given 

bY 

1 1 1 
a;m, = 3 + 2’ (4.2) 

where z E 5, y refers to either the horizontal or vertical plane (see Figure 5.8, for example). 

The parameter aZ is the bunch size of the protons and cf is the bunch size of the antiprotons. 

If an individual proton or antiproton bunch is assumed to be round (a, = oY) and the two 

colliding bunches are assumed to be of equal size (o,, = a@ = cbunch), 

(4.3) 

where f&n,& is the size of an individual bunch distribution. Under a round and equal col- 

liding beam assumption, one can calculate c of Equation 4.1 using the SVX measurement 

by simply multiplying the SVX results by 4. 

u = Jza,,, (4.4) 

The measurement of orrns is statistical in nature and requires a few hours in order to mea- 

sure the luminosity distribution within a few microns. It is not a routine measurement in the 

Tevatron, but it was used as an independent measure of the transverse overlap of colliding 

bunches in experiments discussed in the next chapter. 
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Chapter 5 

BEAM-BEAMEXPERIMENTSINTHETEVATRON 

Section 5.1 presents, in some detail, the separators in the Tevatron and their measured 

ability to ensure that the centroids of proton and antiproton bunches are colliding with zero 

transverse separation and zero crossing angle at an interaction point. The latter part of Sec- 

tion 5.1 presents transverse overlap measurements at the BO interaction point using the sep- 

arators. 

Several measurements were performed in the Tevatron in order to investigate detrimen- 

tal effects of the beam-beam interaction. Section 5.2 describes the experimental procedure 

and measurements which identified beam-beam driven resonances. Section 5.3 presents 

experimental measurements of particle losses at various transverse beam separations near 

these resonances. Section 5.4 compares beam-beam simulations using a weak-strong model 

to the experimental results. 

5.1 ORBIT CONTROL AT AN INTERACTION POINT 

As discussed in Section 2.3, separators in the Tevatron provide the electrostatic kicks 

needed to separate proton and antiproton orbits at all locations where the two beams cross, 

except those at the BO and DO detectors. The resulting helical orbit scheme decreases un- 

wanted beam-beam tune shifts and tune spreads which would otherwise cause a particle dis- 

tribution to spread into dangerous areas of tune space. If the zero amplitude orbit of an an- 

tiproton is not offset from the centroid of the colliding proton distribution at BO and DO, the 

collision is said to be head-on and the helix is correctly tuned. It will be seen in the next two 

sections that it is difficult to measure the separation between the two centroids of a colliding 

proton and antiproton distribution to better than a 0.030 orbit offset. 



FOUR-BUMPS USING THE SEPARATORS 

co FO 

Figure 5.1: Sketch of the location of the separators in the Tevatron. The markers H and V 
indicate separators which deflect in the horizontal and vertical planes, respectively. The four 
squares labelled 1 through 4 denote separators used as elements in a horizontal four-bump 
across BO. 

The closed orbit of protons and antiprotons are moved in opposite directions by the elec- 

trostatic kicks of the separators. If the resulting helix is not properly tuned, a separation or 

crossing angle will be present at an interaction point. The consequence of this is a decrease 

in the available luminosity. Tuning the helix in the Tevatron is accomplished using sepa- 

rator four-bumps. A separator four-bump creates an orbit distortion across an interaction 

point in order to control both the separation and the crossing angle of colliding beams. Two 

separators on each side of an interaction point are used as elements in the four-bump. The al- 

gorithm used to calculate the angular deflections of the separators is described in Appendix 

1. Figure 5.1 sketches the location of the separators in the Tevatron. The separators used in 

a horizontal four-bump across the BO interaction region are labelled in the figure. By con- 

straining the outgoing angle and position of the closed orbit at the endpoints of the bump to 

zero, the four-bump remains a “local” bump; the closed orbit outside of the bump elements 

is unaffected by the bump. 

The predicted orbit of a four-bump which changes only the crossing angle of colliding 
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Figure 5.2: A model’s prediction (Evconjg) of beam positions in the Tevatron due to a 
crossing angle bump at BO. 
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Figure 5.3: An orbit difference between two measured orbits in the Tevatron: a “four-bump 
on” minus a “four-bump off” orbit. 
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beams in the Tevatron is shown in Figure 5.2.i 181 The four-bump introduces a full crossing 

angle of 120 prad and zero separation at the BO interaction point. This predicted orbit is 

compared to the measured proton orbit shown in Figure 5.3. Figure 5.3 is the difference 

between two measured proton orbits in the Tevatron; orbits with and without a 120 prad 

crossing angle bump present. The orbit difference gives the beam positions due to the four- 

bump itself. A comparison of an orbit prediction using a model of the Tevatron and the 

measured orbit due to the crossing-angle bump shows good agreement. The rms deviation 

between the two orbits is 0.14 mm, which is within the 0.15 mm least count of the beam 

position monitors. 

A prediction of orbit positions at the beam position monitors (BPMs) in the Tevatron 

due to a “separation bump” across BO is shown in Figure 5.4. The four-bump introduces a 

separation in the colliding beams while constraining the crossing angle to zero. This pre- 

dicted orbit is the result of a four-bump which creates a 0. lmm orbit displacement and a 0 

prad angle at the BO interaction point. The separation of the bunches colliding at BO is twice 

the magnitude of the orbit displacement or 0.2 mm. Two colliding bunches of 35 pm rms 

beam sigma, for example, would be separated by approximately six sigma. The predicted 

positions are shown ringwide in the upper plot of Figure 5.4 and are displayed for BPMs 

across the BO straight section in the lower plot. It should be noted that the nature of a low 

beta insert requires that the phase advance between the separators closest to the interaction 

point is very close to 7r radians. Consequently, the orbit due to the four-bump closely resem- 

bles one obtained from a two-bump using only those separators. Also, note that the closed 

orbit at the DO interaction point remains unaffected. 

The separators in the Tevatron have an operating voltage limit of 125 kV per plate.l67l 

This limit corresponds to a maximum obtainable colliding beam separation of approximately 

five sigma in each transverse plane. As seen in Figure 5.4, the predicted beam positions 

throughout the ring for a separation bump of six beam sigma are less than the 0.15 mm least 

count of the Tevatron beam position monitors. It is therefore not possible to obtain a mean- 

ingful measured orbit in the Tevatron to compare with the predicted orbit of this separation 

bump, since the orbit changes are too small to be detected. 

LUMINOSITY vs. SEPARATION AND CROSSING ANGLE 

The separator four-bumps described in the previous section were used as a tool in con- 

trolling both the separation and crossing angle of colliding beams in the beam-beam experi- 

ments discussed in this work. By minimizing separation and crossing angle at an interaction 
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Figure 5.4: A model’s prediction (TevccmJig) of orbit displacements at the BPMs in the Teva- 
tron due to a separation bump at BO. The top picture plots ringwide positions while the bot- 
tom picture plots the predicted positions across the BO straight section. 
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Figure 5.5: A qualitative sketch of the variation of transverse sigma of two colliding 
bunches in longitudinal space. The shaded area is the horizontal overlap defined within one 
longitudinal sigma. 

point, the luminosity is optimized and a measure of how well “head-on collisions” are de- 

termined is obtained.[621[6 ‘1 

As calculated in Appendix B, the Gaussian dependence of luminosity on a non-zero sep- 

aration d in one transverse dimension is given by 4 
L=Leexp 3 . 1 1 (5.1) 

The standard deviation of the Gaussian dependence in the above expression is the convo- 

lution of individual proton and antiproton widths; cr = J 0: + CT;. Horizontal and vertical 

overlap are given by 

J 
; I Jg$ 

(5.2) 

The simple sketch of Figure 5.5 gives a qualitative interpretation of what measured trans- 

verse overlap represents; the longitudinal dependence of the overlap of two colliding beams 

is accounted for in the measurement. 

A longitudinal overlap of two colliding distributions is the convolution of individual 

bunch lengths and is given by 

0, = Jqiq. 
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Figure 5.6: A MINUIT fit of measured luminosity vs. vertical beam separation at BO. The 
parameter PI is Lo of Equation 5.1 in le30 cmS2.secw1. The parameter P3 is the measured 
vertical overlap in pm. The error on the measured luminosity is f0.05e30 cmS2secS1. 
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Figure 5.7: A MINUIT fit of measured luminosity vs. horizontal beam separation at BO. 
The parameter Pl is Lo of Equation 5.1 in le30 cm-2sec-1. The parameter P3 is the 
measured horizontal overlap in units of pm. The error on the measured luminosity is 
f0.05e30 cm-2sec-1. 
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Data plotted in Figure 5.6 and Figure 5.7 are the result of typical “separation scans” in 

the vertical and horizontal planes. The separation scans were done at the end of a 6x6 (six 

proton bunches colliding with six antiproton bunches) store, so the transverse and longitu- 

dinal bunch sizes are large. The measured luminosity at the BO interaction region is plotted 

as a function of transverse beam separation at BO. In the figures, horizontal and vertical 

beam separation corresponds to a voltage change in the horizontal and vertical separators 

at the A4 location, respectively. Equation A. 13 of Appendix A is used to convert separator 

kI,/ to prads and then Equation 2.35 is used to translate the angular deflection into an orbit 

displacement. 

The conversion factor from voltage on the A4 vertical separator to transverse separation 

of the centroids of the colliding proton and antiproton bunches is 4.6pm/kV. Parameter P3 

in Figure 5.6 gives a transverse vertical overlap of 61.7 f lpm. The conversion factor for 

the A4 horizontal separator is 3.9pm/kV which yields a horizontal overlap of 66.8f 1p.m in 

Figure 5.7. The accuracy of the measurement in both planes is within approximately 0.030. 

If one assumes that the two colliding beams are round, an overlap of 64 f lprn corresponds 

to individual beam widths of 45 f lpm. 

Note that a translation from kV to transverse beam separation requires knowledge of 

the lattice functions at the interaction point and at the separators. The lattice functions were 

obtained using a Tevtron model Tevconjg. 11*1 The lattice functions at the BO interaction 

point are listed in Table 2.2. Separator lattice functions are listed in Table A. 1. 

Plane eNp (7r mm-mrads) eNfi (n mm-rnrads) u, (cm) bz,y (pm) 

Horizontal 28 19 70 68.2 f 2 

Vertical 28 17 70 68.0 f 2 

Table 5.1: Normalized emittance EN and longitudinal bunch length Q, used in 

the calculation of Q, and by. 

Flying wire profiles and longitudinal bunch length measurements enable a calculation 

of the luminosity using Equation B.12 in Appendix B. A Gaussian profile of luminosity vs. 

beam separation is obtained by calculating the luminosity at different beam separations in 

a given transverse plane. The standard deviation of the resulting Gaussian profile gives a 

calculated transverse overlap. Using this method, a horizontal overlap of 68.2 pm and a ver- 

tical overlap of 68.0 pm was found. Relevant measured parameters used in the calculation 
are listed in Table 5.1. The lattice functions used in the calculation were obtained from the 
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Tevatron model Tevcortfig. This method is not strongly dependent upon accurate knowledge 

of the lattice functions. A 10% variation in the beta function at the interaction point gives a 

3% variation in the calculated overlap. This error is reflected in the values of gZ and uy in 

Table 5.1. 

Agreement between an overlap measurement using separation scans and one using fly- 

ing wires profiles to calculate the luminosity overlap integral is within 10%. 

Profile Measurement 

Crossing Angle 62.7 f 9 - II 

Table 5.2: A comparison of transverse overlap measurements. 

The SVX provides a completely independent measure of transverse overlap of colliding 

beams. An SVX measurement, occurring over a time span of approximately one and a half 

hours just prior to the above separation scans, measured an rms horizontal width of the lu- 

minosity distribution of 40.7 f 0.6pm and an rms vertical width of 44.7 f 0.7pm.@] Using 

Equation 4.4, the rms widths correspond to a horizontal and vertical overlap of 57.6f0.9pm 

and 63.2 f 0.9pm, respectively. A fit of primary vertex data in each transverse plane to a 

Gaussian curve is shown in Figure 5.1. A three dimensional distribution of the luminosity 

as measured by the SVX is also displayed in Figure 5.9. 

The discrepency between the horizontal separation scan and the SVX measurement of 

transverse overlap is approximately 16% while agreement in the vertical plane is approx- 

imately 2%. Further studies are required to discover the source of the discrepancy in the 

horizontal plane. The same lattice function dependence is used for the separation scans and 

the calculation of transverse overlap using flying wire profile measurements. The useful- 

ness of the SVX measurement in this comparison is that it does not require knowledge of 

any lattice function. 

As discussed in Appendix B, a one-dimensional dependence of the luminosity on a hor- 

izontal crossing angle, (Y,, is given by 

(5.4) 
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t A 
Figure 5.8: Primary vertex data as measured by the SVX at the BO interaction point. By 
fitting the data to a Gaussian curve, a measure of the transverse overlap sigma is obtained. 

Figure 5.9: A three dimensional view of primary vertex data as measured by the SVX. 
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Figure 5.10: A MINUIT fit of measured luminosity vs. horizontal crossing angle of proton- 
antiproton collisions at BO. Note that the horizontal axis represents one half of the full cross- 
ing angle at the collision point. The parameters Pl, P2, P3 are Lo, aZ and CY~, of Equation 
5.4, respectively. The error on the measured luminosity is f0.014e30 cm-2.sec-1. 
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A fit to a horizontal “crossing angle scan” is shown in Figure 5.10; the luminosity is mea- 

sured as the horizontal crossing angle is varied. A measure of oZ resulting from the fit is 

found to be 62.7 f 9pm. 

Table 5.2 summarizes a comparison of the different measurement techniques used to 

measure transverse overlap of colliding protons and antiprotons in the Tevatron. 

The beam-beam experiments discussed in Section 5.3 and 5.4 use separation and cross- 

ing angle scans to control beam separation at the BO interaction point. As seen in the above 

results, beam separation in these experiments is accurate to within 0.03 r~. 

5.2 IDENTIFYING BEAM-BEAM DRIVEN RESONANCES 

As shown in Figure 2.5, the Tevatron operates in a region of tune space which is bor- 

dered by fifth and seventh order resonances. The antiprotons are spread in tune space across 

twelfth order resonances due to the beam-beam interaction. In order to investigate which of 

these resonances are largely driven by the beam-beam interaction, particle losses were mea- 

sured as the operating tune of the Tevatron was moved across these various ordered reso- 

nances. 

A “tune scan” consisted of varying the operating tune by changing the correction 

quadrupoies in the Tevatron. The quadrupole current was ramped linearly in time between 

the endpoints of the tune scan sketched in Figure 5.11. The cross marks in the figure roughly 

designate the endpoints of the tune scans. A tune change of 0.061 tune units in Tune Scan 

B, for example, corresponded to a 3 amp linear ramp in the current of both the focusing and 

defocusing correction quadrupole circuits. As expressed in Equation 2.26, it is assumed that 

a linear change in the quadrupole current corresponds to a linear change in the proton tune. 

The tune was thus measured only at the two endpoints of the tune scan. The rate of change 

of tune with time was held constant at 0.01 tune units per minute. 

In order to identify beam-beam driven resonances, it was necessary to compare back- 

ground losses for colliding beams to background losses obtained when resonance lines were 

crossed with a single beam. Particle losses were measured while operating under both con- 

ditions: with protons only (6 proton bunches) in the Tevatron and also during a 6x6 colliding 

beam store. 

Particle losses were measured using the most sensitive background loss monitors in the 

Tevatron, which are located at the CDF and DO interaction regions. A comparison of typical 

loss patterns obtained at each interaction region during a diagonal tune scan (Tune Scan B 

of Figure 5.11) is shown in Figure 5.12. Loss monitors at DO are located farther away from 
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Figure 5.11: A map in tune space which sketches the endpoints and the change in the proton 
tune during tune scans experimentally performed in the Tevatron. Tune Scan A is a vertical 
scan crossing 7th and 9th order resonances. Tune Scan B is a diagonal scan which crosses 
a large number of resonances including 5th and 8th order resonances. Note that only the 
fractional part of the tune is plotted. The integer part of the tune in the Tevatron is equal to 
20. 

the beam pipe than the BO monitors, so the DO loss monitors do not saturate during the tune 

scan. In order to make a comparison of particle losses at the two locations, DO losses are 

normalized to one of the BO loss peaks. It can be seen that the loss patterns at both interaction 

regions are quite similar. This is indicative that losses during the tune scans are not occurring 

at one location only in the Tevatron. More particles are lost at points of maximum beta, 

where the beam envelope occupies the largest space in a given transverse dimension. In 

the Tevatron, a maximum beta of approximately 1100 m occurs at the low beta insertions 

located at BO and DO. In the arcs of the Tevatron, the maximum beta is approximately 100 

m. 

Only a 5% decrease in proton and antiproton intensities occurred across the 7th and 9th 

order resonances of Tune Scan A. A larger decrease in particle intensities occurred during 

Tune Scan B, which crosses 5th and 8th order resonances. Proton and antiproton intensities 
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typically decreased by approximately 10% to 20% during Tune Scan B. The small num- 

ber of particles lost while crossing lower ordered resonances such as the 5th order is due to 

the continuous change of the operating tune during a tune scan. The operating tune did not 

remain near a resonance long enough for larger particle losses to occur. 

x IO’ Losses at BO and DO during Tune Scan - 6x6 Store (12/S/92) 

- BO 
-_ M) (scaled by 40~3 Hz) 

‘!I 
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i 
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Figure 5.12: A comparison of measured background losses at the BO and DO interaction 
regions during a tune scan (Tune Scan B of Figure 5.11). The DO background losses are 
scaled for the comparison. The BO background loss monitors saturate at lo4 Hz. 

PROTON LOSSES DURING TUNE SCANS 

Proton losses were used to identify beam-beam driven resonances during the tune scans 

of Figure 5.11. A comparison of proton losses from a proton only store and from a 6x6 

colliding beam store for tune scans A and B are shown in Figures 5.14 and 5.13, respectively. 

It is evident from the measured losses of Tune Scan B that the 5th and 8th order reso- 

nances are driven both by the Tevatron lattice itself and by the beam-beam interaction be- 

tween colliding protons and antiprotons. 

It is possible that proton losses which occur in the single beam case are due to the sep- 

arated closed orbits in the Tevatron. Separated orbits cause a particle to receive non-linear 

kicks as it travels off-centered through magnetic elements and sees non-linear components 

of magnetic fields. It would be interesting to perform Tune Scan B with the separators off 
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Figure 5.13: A comparison of proton losses measured at BO while crossing the 5th and 8th 
order resonances (Tune Scan B of Figure 5.11) for protons only and for a 6x6 colliding beam 
store. 
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Figure 5.14: A comparison of proton losses measured at BO while crossing 7th and 9th order 
resonances (Tune Scan A of Figure 5.11) for protons only and a colliding beam store. 
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to measure the effect of these non-linear kicks. At the time of this writing, it has not been 

determined what magnetic elements are driving 5th and 8th order resonances. 

It is interesting to note that proton losses are negligible for the single beam case when 

crossing 7th and 9th order resonance lines in Tune Scan A. Only the colliding beam case 

is characterized by significant particle losses. This suggests that the 7th order resonance 

is a resonance which is at least initially driven only by the beam-beam interaction in the 

Tevatron. Once a particle’s amplitude grows due to the nonlinearities of the beam-beam 

interaction, it can be lost because of non-linear kicks it receives from elements in the lattice 

itself. 

The observation that an odd-ordered component of the beam-beam driving force caused 

significant particle losses in the Tevatron led to an investigation of how well the beams were 

colliding. As stated in Section 3.1, if two particles are colliding head-on, the beam-beam po- 

tential is an even function in both transverse dimensions. Only even-ordered resonances are 

expected to be driven by the beam-beam interaction when collisions are head-on. Indeed, a 

50 prad crossing angle at the BO interaction region was discovered and removed due to this 

observation. After the crossing angle at BO was corrected, particle losses were low in Tune 

Scan A. This observation suggests that 7th order resonant excitation was removed and only 

14th order resonant effects were observed when the helix was properly tuned. Correcting 

the crossing angle at the BO collision point led to a 5% increase in the luminosity. 

5.3 INVESTIGATING BEAM-BEAM DRIVEN RESONANCES AS A FUNC- 

TION OF BEAM SEPARATION 

Experimental results of particle losses as a function of proton tune for various trans- 

verse separations of two colliding beams are presented. The first section describes mea- 

surements taken during Collidier Run IA. Problems with this measurement procedure and 

the experimental results during this experiment are discussed. The experimental procedure 

was improved and the experiment repeated in Collider Run IB. The second section presents 

measurements taken during Collider Run IB. The third section presents a comparison of the 

experimental results of Collider Run Il3 with simulation results. 
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Figure 5.15: Background Losses as a function of vertical proton tune for three tune scans 
done at three different transverse separations of the centroids of the colliding proton and 
antiproton bunches. 
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COLLIDER RUN IA-A BEAM-BEAM EXPERIMENT ANDPROBLEMS WITH THE MEA- 

SUREMENT 

A 1x1 store (one proton bunch colliding with one antiproton bunch) was utilized to mea- 

sure particle losses in the Tevatron as a function of different transverse beam separations. 

The two bunches were set to cross at the BO interaction point and consequently crossed again 

at the opposing EO straight section. The operating tune was moved across 7th and 9th order 

resonances as in Tune Scan A of Figure 5.11. The tune was changed linearly in time dur- 

ing the tune scans, that is, the correction quadrupoles were ramped smoothly between two 

endpoints. Each tune scan represented different transverse beam separations of the collid- 

ing protons and antiprotons at the BO interaction point. The orbits of the antiprotons and 

protons were separated at the interaction point using separation four-bumps. The results of 

the measurements of particle losses is shown in Figure 5.15. 

The results of the loss measurements were puzzling in that regardless of the tune, an- 

tiproton losses were largest under conditions when the bunches were fully separated at 5.70. 

Since the beam-beam kick at such a large separation is much smaller than at intermediate 

separations, these results aroused some suspicion in the measurement procedure. The dy- 

namically changing tune was thought to have caused a non-equilibrium situation in particle 

losses.l65l A beam-beam experiment performed in the SPS at CERN in 1989 had in fact 

seen such a non-equilibrium behavior in the background rate. SPS experimenters described 

particle losses due to a 13th order resonance as suddenly increasing as the tune was changed 

and then settling to a new equilibrium value with a time constant of many seconds. 1251 

Particle loss behavior as a function of tune was thus investigated in another 1x1 store. 

Figure 5.16 displays a confirmation of this non-equilibrium behavior of particle losses. As 

the tune ( correction quadrupole current ) is changed, both the antiproton and proton losses 

are seen to increase significantly. After a period of time of the order of minutes, this initial 

rise in the losses settles down to a new equilibrium value which more accurately describes 

particle losses at the new tune. 

Confirmation of the non-equilibrium behavior of particle losses as the tune was changed 

led to a modification in the experimental procedure in proceeding beam-beam experiments. 

In order to eliminate measuring particle losses which resulted solely from the slew rate of 

quadrupole currents, the operating tune was moved across 7th order resonances in discrete 

steps. Particle losses were measured after a stable tune setting was reached and equilibrium 

values of particle losses became apparent. 
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Figure 5.16: Particle losses during a change of tune. The non-equilibrium value of the losses 
during a tune change is apparent. 
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Figure 5.17: Tune diagram marking the proton tune settings where particle losses were mea- 
sured during the beam-beam experiment discussed in Section 5.3.2. 

COLLIDER RUN IB - MEASUREMENT OF PARTICLE LOSSES AS A FUNCTION OF TRANS- 

VERSE BEAM SEPARATION 

A 1 x 1 store was utilized to measure particle losses driven by the beam-beam interaction 

as a function of transverse beam separation. The antiproton and proton bunch were set to 

cross at the BO interaction point and consequently crossed again at the opposing EO straight 

section. The operating tune was moved across 7th order resonances in four discrete steps. 

The points in tune space in which losses were measured are shown in Figure 5.17. 

Figure 5.18 is a close-up of Figure 5.17 which labels each tune setting and depicts a 

measured tune error of 410.0003 in both the horizontal and vertical planes. This tune error is 

the standard deviation of four tune measurements taken for four different beam separations 

at the same proton tune setting. The measured proton tune for the four measurements are 

listed in Table 5.3. 
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Measurement # Horizontal Tune Vertical Tune 

1 20.5837 20.5753 

2 20.5828 20.5727 

II 3 1 20.5824 1 20.5704 

II 4 I 20.582 1 I 20.5683 

Table 5.3: Measured proton tune as marked in Figure 5.18. 

Because of the transient behavior of particle losses during a tune change (as discussed 

in Section 5.3.1), measurements of particle losses were taken only after losses reached an 

equilibrium value after a tune change. 
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Figure 5.18: A close-up of Figure 5.17 which depicts the measured uncertainty in the proton 
tune and assigns labels to the four measurement points. 

Figures 5.19 and 5.20 display antiproton and proton losses as a function of vertical pro- 

ton tune. Each symbol in the figures represents a different beam separation at the BO inter- 

action point. Beam separation is measured in units of transverse rms sigma of the proton 

bunch and is denoted by CT. An rms separation d is given by 

d=,/dztdZ,, (5.5) 
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where d, denotes horizontal separation and d, denotes vertical separation. The beams were 

separated equally in each plane by la, 2a and 3a, yielding an rms beam separation of I .&, 

2.80 and 4.2a, respectively. The transverse size of the proton bunch at BO was calculated US- 

ing Equation 2.28. Normalized proton emittances obtained from flying wire measurements 

were 167r mm-mrads in the horizontal plane and 18~ mm-mrads in the vertical plane. The 

lattice functions used in the calculation of proton sigma at BO are listed in Table 2.2. The 

transverse proton sigma is found to be 32 pm in the horizontal plane and 33 ,um in the ver- 

tical plane. 

Separation bumps which are discussed in Section 5.1.1 were used to separate the beams 

at BO. A BO separation bump does not affect the orbit at EO, so separation of the proton and 

antiproton bunch at EO remained constant. Beam separation at EO is estimated to be 2.6 cr 

in the horizontal plane and 4.9 u in the vertical plane. The rms beam separation at EO was 

thus approximately 5.5 cr. 

The error in particle losses is a reflection of the fluctuation of losses during the measure- 

ment; each error bar represents the standard deviation of particle losses over a four to five 

minute period. 

Note that both proton and antiproton losses for head-on collisions at all tune settings are 

minimal. This observation was used to maintain the same initial conditions for each mea- 

surement. After particle losses were observed for a given tune at a given separation, separa- 

tion bumps were removed and collisions at BO returned to head-on collisions. At these low 

loss conditions, collimators were moved into the beam in order to scrape the beams and re- 

move any tails on the distribution of both the proton bunch and antiproton bunch which may 

have developed. In this way, transverse beam blow-up was eliminated and initial proton and 

antiproton emittances remained constant throughout the experiment. Bunch intensities did 

decrease significantly at times, but the ratio of particles per bunch between the proton and 

antiproton bunches remained constant at approximately a 2:l ratio. Table 5.4 lists initial 

proton and antiproton bunch intensities for each measurement. 

In order to examine what beam-beam resonant driving terms are driving particle losses 

in the experiment, one must examine more carefully what amplitude particle the measured 

proton tune spectrum represents. As discussed in Section 4.1, the magnitude of the power 

spectrum obtained from the Tevatron Schottky detectors indicates that the signal is due to a 

coherent motion of protons. Since the motion is coherent, the power spectrum represents an 

oscillation of the entire proton distribution. More protons exist at small amplitudes, thus it 

is assumed that the peak signal in the measured proton tune is due mainly to small amplitude 
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Figure 5.19: Antiproton background losses at BO when the proton tune is near the 7th, 
9th and 1 lth order resonances of Figure 5.18. Each symbol represents a different proton- 
antiproton bunch separation at BO. 
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Figure 5.20: Proton background losses at BO when the proton tune is near the 7th, 9th and 
11 th order resonances of Figure 5.18. Each symbol represents a different proton-antiproton 
bunch separation at BO. 
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protons. The linear tune shift of the small amplitude protons due to beam-beam collisions 

with the antiprotons must be taken into account. 

Initial Proton and Antiproton Intensities (x1.0 x 10’) 

Vertical Proton Beam Separation ll 
The 

20.5753 

20.5727 

20.5704 

20.5683 

OU 1.4a 4.20 5.70- 

P Is P ii P P P P 

125 52 125 52 125 52 125 50 

123 50 122 50 115 45 110 45 

105 45 100 45 90 40 80 35 

59 30 58 30 56 30 54 30 

Table 5.4: Bunch intensities during beam-beam experiments. Uncertainty 

in the bunch intensities due to signal fluctuations is approximately 5%. 
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Figure 5.2 1: Tune diagram marking the measured proton tune settings (crossmarks) of the 
beam-beam experiment and the base tune (dots) of particles which are unperturbed by the 
beam-beam interaction. In the beam-beam experiment, protons and antiprotons are spread 
in tune from the base tune settings. 

For the beam intensities listed in Table 5.4 and a beam emittance of 167mrn-mrads, the 

proton linear tune shift is approximately 0.002. In this work, the tune of a particle if no 
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beam-beam interaction is present is defined as the base tune. The base tune of both the pro- 

tons and antiprotons is thus shifted down and to the left from the measured proton tune of 

Figure 5.18. This tune shift is taken into account in Figure 5.2 1. The measured proton tune, 

designated by the crossmark in Figure 5.2 1, corresponds to a base tune represented by the 

dot. 

Some interesting observations are made from the experimental results plotted in Figures 

5.19 and Figure 5.20. Measurement 1 in Figure 5.18 marks the nominal operating point in 

the Tevatron; protons and antiprotons are spread in tune across 12th order sum resonances 

and are in between a 9th and 11 th order difference resonance. At this tune setting, antipro- 

ton and proton losses are minimal for head-on collisions and for separated beams. No beam- 

beam driving terms are observed to strongly drive 12th order resonances or the 9th and 11 th 

order difference resonances. The experiments above do not address any beam-beam inter- 

action effects on particle lifetimes due to the 11 th and 12th order resonance driving terms. 

Further measurements are necessary to measure particle lifetime effects. 

The presence of beam separation is seen to excite odd-ordered sum resonances. At mea- 

surement 2 in Figure 5.18, the base tune is close to two 7th order difference resonances: 

(lQ, + SQ,) and (7QJ. Antiproton losses at this tune setting increase as beam separation 

at BO is increased. Antiproton losses are highest at a beam separation of 4.2~. An increase 

of particle losses in the presence of separated beams is also apparent when the tune is near 

the (2Q5 + 5Q,) sum resonance (measurement 3 in Figure 5.18). Antiproton losses increase 

until the beams are separated by 2.80 and then start to decrease at larger separations. Proton 

losses are still increasing at a beam separation of 4.20 at this tune setting. Proton losses are 

significant only near this 7th order sum resonance, but remain relatively low elsewhere. 

Particle losses are minimal for head-on collisions and for separated beams at measure- 

ment 4 in Figure 5.18. The bunch intensities during this measurement were very low (proton 

intensity < 60 x 10’). It will be shown in the next section that the beam-beam tune spread 

of the antiprotons was small enough that particles did not cross any dangerous resonances 

at this tune setting and with such low bunch intensities. 

The most important observation relevant to this dissertation is that no clear pattern of 

particle losses as a function of beam separation due to odd-ordered beam-beam resonant 

driving terms is apparent. One cannot, for example, make any general statements about 

the beam-beam driving force which marks a 2.80 separation as a beam separation which is 

more destructive in the Tevatron than a 4.2~ separation. The magnitude of particle losses 

at different beam separations is clearly dependent upon the excitation strength of a given 
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resonance and the manner in which particles are spread in tune across the resonance. This 

observation is also apparent in some beam-beam measurements which were done on a 1x1 

proton-antiproton store in the SPS at CERN in 1989. Background losses during a tune scan 

across 13th and 16th order resonances showed higher background rates for 3a beam sep- 

aration than 6u beam separation at the majority of points in the tune scan. At one of the 

extreme points in the tune scan, though, particle losses were 50% higher at 6u separation 

than at 3u separation. [251 

It should be noted that short particle lifetimes compare agreeably to conditions of large 

particle losses. A comparison of proton and antiproton losses with their respective parti- 

cle lifetimes for a tune close to the (2QZ + 5Q,) resonance is displayed in Figures 5.22 

and 5.23. Particle losses and particle lifetimes are plotted for different beam separations. 

Particle lifetimes are calculated using bunch intensity data. Bunch intensities were fit to an 

assumed exponential decay 

N = &exp(-i), (5.6) 

where t represents time and No is the number of particles per bunch at t = 0. The decay 

constant 7 is particle lifetime in units of hours and is plotted in Figures 5.22 and 5.23. The 

largest decrease in beam intensity and hence the smallest lifetime measurements occurred 

near this 7th order resonance. 

5.4 COMPARISON WITH A BEAM-BEAM MODEL 

Certain parameters within a beam-beam model must be specified such that the model 

can be related to an experiment. Two different definitions of destructive behavior are used 

in this work to relate beam-beam simulation results to measured particle losses. 

The first approach defines particle losses in an intuitive manner; equivalent to introduc- 

ing an external obstacle into a particle’s path. This method of analysis defines a limit on 

a particle’s amplitude. Any particle whose amplitude reaches this limit is counted as a lost 

particle. A count of the number of lost particles allows a statistical interpretation of the sim- 

ulation results. 

The second approach examines the level of perturbation the beam-beam interaction in- 

troduces in a particle distribution. The % smear, a variation in the radius of motion in nor- 

malized phase space, is used as a measure of the amount of perturbation. The beam-beam 

simulation code used in this work focuses on a particle’s motion which is due solely to non- 

linearities of the beam-beam interaction. A measure of % smear in the beam-beam model 
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Figure 5.22: Antiproton losses and lifetimes at different beam separations. Each data point 
represents a measurement over a time span of approximately 4 minutes with the antiproton 
tunes close to the (2&= + 5Q,) resonance. 
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Figure 5.23: Proton losses and lifetimes at different beam separations. Each data point rep- 
resents a measurement over a time span of approximately 4 minutes with the proton tunes 
close to the (2Q, + SQ,) resonance. 
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describes how strongly a particle’s motion is affected by the beam-beam interaction. Parti- 

cle losses are assumed to be related to the largest perturbations in the particle distribution; 

the maximum % smear of the particle distribution. 

The first two parts of this section give more detailed information on how a lost particle 

and % smear are defined in the beam-beam simulations. Simulated tune scans are presented. 

The third part of this section presents simulations of the lx 1 beam-beam experiment done 

in the Tevatron during Collider Run IB. 

DEFINITION OF A LOST PARTICLE 

A lost particle is defined as a particle whose maximum amplitude reaches a specified limit. 

The magnitude of this amplitude limit and the effect different amplitude limits have on the 

analysis is discussed in this section. 

Particles are launched in the beam-beam simulation at various initial positions and phases. 

Particle amplitudes, defined by Equation 3.36, range fromOa to 60. Initial particle positions 

and phases are distributed uniformly throughout phase space. This treatment of a particle 

distribution creates an artificially large population of high amplitude particles. In order to 

correct for this, a Gaussian weighting is imposed on a particle distribution. Particles are 

binned according to initial amplitude and the number of particles per bin is weighted using 

a Gaussian dependence. The range of amplitudes in each bin is la. 

The number of lost particles is defined in terms of a percentage of the total number of 

particles in the distribution. The % of particles which are lost is given by 

% lost = 100 x c 2 NLb, 
b fib 

(5.7) 

where the summation is over the number of bins, ?& is the weight of each bin and NLb is the 

number of lost particles in a given bin. The total number of particles per bin is given by Nb. 

Figure 5.24 displays the % of particles lost during a simulated vertical tune scan across the 

resonances labelled in Figure 5.18. Lost particles are plotted as a function of vertical base 

tune in the simulation. Each symbol in the top plot in Figure 5.24 represents the number of 

lost particles for different horizontal amplitude limits, ranging from Oa to 30. The imposed 

Gaussian weighting scheme is evident; approximately 70% of the particle distribution is lost 

at a la amplitude limit, 95% of the particle distribution is lost at a 2a amplitude limit, etc. 

A fractional error, Af, is associated with each simulation point and is given by 

Af= 100 x NL (5.8) 
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Figure 5.24: A vertical tune scan simulation displaying lost particles across the resonances 
of Figure 5.18. A beam separation of 2.8~ is present at BO. Each curve represents an am- 
plitude constraint (denoted by w and in units of a) used to define a particle as lost. 
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where NL is the total number of particles lost. 

Figure 5.25 plots particle losses for horizontal and vertical amplitude limits of 3.50. The 

top figure imposes a horizontal amplitude limit and the bottom figure imposes a vertical 

amplitude limit. It is interesting to see the effects of crossing a 9th order difference (- 1Q2 + 

8Q,) resonance and two 7th order sum resonances (7Q, and lQZ + SQ,) in the tune scan. 

The loss peak at a vertical base tune of 20.5726 corresponds to antiprotons close to the 9th 

order difference resonance. Note that only the fractional part of the base tune is enumerated 

in all plots. The loss peak at a vertical base tune of 20.5686 corresponds to antiprotons near 

the ( 1Q2 + 6Q,) resonance. The 7QY resonance at a vertical base tune of 20.57 14 is seen 

only when examining vertical motion. This is a reasonable observation since the resonant 

driving term has only a vertical component. 

Note that evidence of resonance effects is dependent upon the amplitude limit chosen. 

The bottom plot of Figure 5.24 displays particle losses for horizontal amplitude limits within 

a 0.3~~ range. Even with a limit specified over such a small range in amplitude, the resonance 

structure of some resonances is not always apparent. 

DEFINITION OF MAXIMUM % SMEAR 

As discussed in Section 2.1, motion of a particle in a linear accelerator produces circular 

motion in normalized phase space. The radius of normalized phase space is 

where (XN, XL) are the normalized coordinates of Equation 2.18. Figure 5.4 shows the ef- 

fect of the beam-beam interaction on a particle’s motion. A particle’s position and phase is 

tracked for multiple turns with and without the beam-beam interaction present. The circu- 

lar orbit present in the linear case becomes smeared due to the nonlinear kicks of the beam- 

beam interaction. The variation in the radius of the smeared orbit is known as % smear and 

is defined as 

YO smear = 
N (rk - r,)* 

~o(N-l)r&’ 
(5.10) 

where k denotes the turn number and N is the total number of turns. The mean radius over 

N turns is r,. 

It should be noted that very small amplitude particles ( amplitudes less than 0.010 ) will 

give artificially large smears even for small variations in their mean radius. The intention is 
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Figure 5.25: Simulation of a vertical tune scan for a 1x1 store. Particle losses reaching a 
horizontal and vertical amplitude limit of 3.50 are displayed in the top and bottom plots, 
respectively. 
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Figure 5.26: Simulation results showing the effect of the beam-beam interaction on one- 
dimensional motion. The position and phase of particles with different initial amplitudes is 
tracked over multiple turns and plotted in normalized phase space. The plot displays particle 
motion with (< # 0) and without ([ = 0) the beam-beam interaction. 

to relate % smear to particle losses, so it is assumed that perturbations in very small arnpli- 

tude particles will not cause the particles to be lost, Only particles with initial amplitudes 

greater than la in both planes are considered in measurements of maximum % smear. 

Figure 5.27 plots maximum % smear in the horizontal and vertical planes for a tune scan 

across the resonances of Figure 5.18. The top figure measures horizontal % smear (mea- 

sured in (ZN, XL) phase space) and the bottom figure measures vertical % smear (measured 

in (ye, yb) phase space). The results are similar to those obtained in the tune scans of Figure 

5.25. 

SIMULATIONS OF A 1x1 STORE IN THE TEVATRON 

Beam-beam simulation results presented in this section are compared to the Tevatron 
beam-beam experiment discussed in Section 5.3.2. 

Some parameters remain constant for all simulations. A particle is tracked for 16,000 

turns, which corresponds to less than one second of real particle evolution. The total num- 

ber of particles launched at various amplitudes and phases for each simulation point is ap- 

proximately 2600. The normalized emittance is 15n mm-rnrads in both the horizontal and 

vertical planes. The energy of the particle is 900 GeV. 

The simulation includes a beam-beam kick at the BO and EO locations. Lattice functions 

at each beam-beam crossing point were calculated using a MAD lattice design program. m 
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Figure 5.27: Simulation of a vertical tune scan for a 1x1 store. Maximum horizontal and 
vertical % smear is plotted in the top and bottom plots, respectively. The horizontal base 
tune remains constant at 20.585. The beam separation d is the beam separation at BO. 
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Closed orbits for different beam separations at BO were calculated by including separator 

four-bumps in the lattice calculation. The angular deflections of the four-bump in the lattice 

were equivalent to the separator four-bumps used in the Tevatron. Similar to the four-bumps 

used in the Tevatron, the separator four-bumps used in the lattice calculation changed only 

the beam separation at BO. The beam separation at EO remained a constant 2.6~ in the hor- 

izontal plane and 4.90 in the vertical plane. 

Determination of the amplitude limit which defines a lost particle is somewhat arbitrary. 

As discussed previously in this section (see Figure 5.24), a range of amplitude limits must 

be examined to ensure that resonant effects are seen. In this work, it is observed that dif- 

ferent amplitude limits do not cause significant differences in a qualitative comparison of 

simulated losses at different beam separations. 

In the simulation results discussed in this section, a lost particle is defined as one which 

reaches the tails of the Gaussian distribution; an amplitude limit of 3.50 is defined for both 

the horizontal and vertical plane. In a Gaussian distribution of particles, 99.95% of the total 

number of particles are within a 3.50 amplitude range. 

As discussed in Section 3.5, it is necessary to consider the orbit offset due to the dipole 

contribution to the beam-beam kick. The position and angle offset at the location in which a 

particle’s maximum amplitude is measured is obtained using Equation 2.35. The total orbit 

offset is the sum of the orbit offsets due to dipole kicks at the BO and EO crossing points. The 

largest dipole kick of 4.2 prads occurs at BO with a beam separation of 1.40. The dipole kick 

at EO is 0.008 prads and gives a negligible orbit offset in comparison with orbit offset due 

to the dipole kick at BO. The calculated closed orbit offset at the observation point which 

results from the BO dipole kick is 11.65 pm. In terms of transverse beam sigma at the ob- 

servation point, this orbit offset adds approximately 0.020 to a particle’s amplitude, which 

is a negligible effect. 

This section is divided into subsections according to the labelled tune settings of Figure 

5.21. The proton bunch intensities for measurements at the tune settings of Measurement 1 

and 2 are approximately the same. The simulations run at these tune settings are discussed 

in the first subsection. Beam-beam simulations for Measurement 3 in Figure 5.21 are dis- 

cussed in the next subsection. The last subsection discusses the experimental conditions of 

Measurement 4. 
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MEASUREMENT 1 AND 2 

Beam-beam simulations of Measurement 1 and 2 of Figure 5.21 consist of simulated 

vertical tune scans across 7th order sum resonances and 9th and 11 th order difference res- 

onances; 7Q,, (lQZ + 6Q,), (-lQZ + SQ,) and (-2Q3: t 9Q,). A proton intensity of 

120 x 10’ was used for all of the simulation runs discussed in this section. 

While the vertical base tune is moved across these resonances, the horizontal base tune 

remains at 20.5854 during the tune scans. Note that the horizontal base tune used in the 

simulations is approximately 0.004 tune units larger than the horizontal base tunes of Mea- 

surement 1 and 2. Particles in the simulation are spread in tune across more 12th order reso- 

nances than in the actual beam-beam experiment. Since minimal losses have been observed 

in the Tevatron due to 12th order resonances, it is assumed that this discrepancy in the hor- 

izontal base tune is not significant. There is also a shift in the vertical base tune in which 

resonant effects are observed in the simulation because of this discrepency in the horizontal 

tune. 

Figure 5.28 displays antiproton beam-beam tune footprints for a 1x1 store at a proton 

bunch intensity of 120 x 10’. The footprint was obtained from simulation runs in a “reso- 

nance free” region of tune space ( a region free of lower order resonances ). In the simula- 

tions, particles were launched with amplitudes ranging from Oa to 60 in steps of la and with 

zero initial phase. There was no Gaussian weighting imposed on the number of particles at 

a given amplitude. The base tune of the footprint is overlayed on the base tune setting of 

Measurement 1 in tune space; the tune spread which is plotted represents the tune spread of a 

particle distribution without resonant effects considered. In effect, it is a qualitative picture 

of the initial tune spread of the particle distribution. The four plots in the figure represent 

the four transverse beam separations at BO which were present in the actual beam-beam ex- 

periment in the Tevatron. Figure 5.29 displays the same antiproton beam-beam footprints 

overlayed on the base tune setting of Measurement 2. 

As seen in Figure 5.28, Measurement 1 examines the resonant excitation strength of 9th 

and 11 th order difference resonances. Particles are close to the 9th order resonance and 

spread across the 11 th order resonance when collisions are head-on or when there is a 1.40 

transverse beam separation at BO. At beam separations of 2.8~ and 4.2a, the tunes of both 

large amplitude and small amplitude particles surround the 9th order resonance. 

As Figure 5.29 indicates, the resonance effects of the 7Qy and ( 1QZ+6Qy) are measured 

in Measurement 2. 
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Figure 5.28: Antiproton beam-beam tune shift due to beam-beam detuning overlayed on 
base tune of Measurement 1. Tune shifts due to resonant effects are not shown. The proton 
intensity is 120 x log. Beam-beam footprints represent collision points at both BO and EO. 
Each plot represents a different beam separation at BO. 
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Figure 5.30 displays particle losses in a simulated vertical tune scan across these reso- 

nances. Particle losses in the top and bottom figures are measured with an imposed Hopi- 

zontal and vertical amplitude constraint, respectively. Each symbol in the plots represents 
a different transverse beam separation at BO. For completeness, simulations were also run 

for a beam separation of 5.7a at BO, which corresponds to a 4a beam separation in both the 

horizontal and vertical planes. No measurements were done in the Tevatron at this beam 

separation. 

It is now necessary to account for the discrepency in the horizontal base tune between 

the simulation and the actual experiment. At a horizontal base tune of 20.5854, the vertical 

base tunes of the resonances of interest are listed in Table 5.5. 

Measured particle losses at the tune setting of Measurement 1 ( vertical base tune = 

0.5733 f 0.0003 ) are driven by (-2Q, $9Q,) and (-lQZ + SQ,) resonances. As Table 

5.5 indicates, the vertical base tunes which satisfies these 7th order resonances are 20.5745 

and 20.5732, respectively. Increased particle losses are observed near these vertical tune 

settings. 

Resonant ‘hnes in The Scan Simulation 

Resonance Vertical ‘llme 

-2&z + g&y 20.5745 

-1&z + 8Q, 20.5732 

7QY 20.57 14 

l&z + 6Q, 20.569 1 

Table 5.5: Vertical tunes which satisfy the relation 

n,Q, f nyQy = 144 when QZ = 20.5854. 

Measured particle losses at the tune setting of Measurement 2 ( vertical base tune = 

0.5707 f 0.0003 ) are driven by 7QY and ( lQZ + 6Q,) resonances. As Table 5.5 indicates, 

these resonances satisfy the 7th order resonant condition at vertical base tunes of 20.5714 

and 20.5691,respectively. Peak losses which are due to these resonances are observed at 

vertical tunes which are shifted down from these calculated tune settings by approximately 

0.0005 tune units. This effect is most likely due to particle tune spreads which spread over 

a region of tune space near the unperturbed base tune. 

In the horizontal plane, a qualitative agreement between the simulation and Tevatron 

loss measurements is observed for both Measurement 1 and 2. As is the case in the beam- 

beam experiment, simulated particle losses are low in the case of head-on collisions and for 
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Figure 5.30: Simulation of 1x1 store measuring lost particles in a vertical tune scan. Lost 
particles in the top and bottom figure are defined with a horizontal and vertical amplitude 
limit, respectively. 
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a 1.40 beam separation. Simulated particle losses are comparatively low for all beam sepa- 

rations at the tune setting of Measurement 1, which agrees with the minimal losses measured 

in the Tevatron. Losses are predicted to be largest at a beam separation of 4.20 due to the 

( lQZ + 6Q,) resonance. The next largest particle loss is predicted at a beam separation of 

2.8a. As seen in Figure 5.19, this is indeed what is observed in Measurement 2. Simulated 

particle losses are predicted to decrease if the beam separation at BO is increased to 5.7a. 
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Figure 5.32: A comparison of measured particle losses to simulated particle losses for Mea- 
surement 2 of Figure 5.2 1. Each data point represents a different transverse beam separation 
at BO. 

Figure 5.32 summarizes a qualitative comparison of particle losses measured at the tune 

setting of Measurement 2 in the Tevatron to the peak particle losses observed at a vertical 

base tune of 20.5686. At this base tune, resonant effects are largest in both the horizontal 

and vertical planes. 

The conversion of particle losses from % of total particles lost to a loss rate is obtained 

as follows: 

101 



Simulated Losses (Hz) = (FNt) (&) xSF. (5.11) 

The total number of particles in the simulation is given by iV*. The time of tracking is At, 

where At = (number of turns)/f,.,,. The parameter SF is a constant scale factor which 

enables the comparison of loss measurements to be made on a unit slope. In Figure 5.32, 

SF is equal to 400. 

It is observed in Figure 5.32 that, in a qualitative sense, simulation results compare agree- 

ably with measured losses. In order to make a more quantitative comparison, knowledge of 

the parameters defining the scale factor SF would be necessary. 

Figure 5.31 displays maximum horizontal and vertical % smear in the simulated tune 

scan. As in the beam-beam experiment in the Tevatron, maximum % smear for Measure- 

ment 2 (across the ( lQZ + SQ,) resonance) is largest for a 4.2~ beam separation . At the 

same tune setting, the second largest peak occurs at a beam separation of 2.80, also in agree- 

ment with Measurement 2. Smear peaks of comparable magnitude, though, are observed 

across the ( -lQZ + SQ,) resonance. This does not compare agreeably with the low particle 

losses of Measurement 1. It is therefore difficult to make a case that a measure of maximum 

% smear will accurately predict particle losses which will occur at at different transverse 

beam separations. 

MEASUREMENT 3 

Simulated particle losses and % maximum smear are compared to antiproton losses ob- 

served during Measurement 3 in the Tevatron (see Figure 5.19). Measured particle losses at 

the base tune setting of Measurement 3 ( vertical base tune = 20.5684 f 0.0003 and horizon- 

tal base tune = 20.5508 f 0.0003 ) are driven by the (2Q2 + 5Qy) resonance. Beam-beam 

simulations of Measurement 3 of Figure 5.21 thus consist of simulated vertical tune scans 

across the (2QZ + 5Q,) resonance. The horizontal base tune in the simulation remains con- 

stant at 20.5828 and is shifted by 0.002 from the horizontal base tune of Measurement 3. As 

in the previous section, this discrepency in the horizontal tune shift between the simulations 

and Measurement 3 will be accounted for. 

A proton intensity of 95 x 10’ is used for all of the simulation runs at this tune setting. 

Figure 5.33 displays the antiproton beam-beam tune footprints for a 1x1 store at this proton 

intensity. The base tune setting of the footprint calculation is overlayed on the base tune 

setting of Measurement 3 in tune space. 

Figure 5.34 displays particle losses in a simulated vertical tune scan at different beam 
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Figure 5.33: Antiproton beam-beam tune shift due to beam-beam detuning overlayed on 
base tune of Measurement 3. Tune shifts due to resonant effects are not shown. The proton 
intensity is 95 x 10’. Beam-beam footprints represent collision points at both BO and EO. 
Each plot represents a different beam separation at BO. 
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Simulation Results: 1x1 store, Horizontal Base Tune 0,583 
Beam Separation at BO: 0. 1.4. 2.8 and 4.2 sigma 
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Simulation Results: 1x1 store, Horizontal Base Tune 0.583 
Beam Separation at BO: 0, 1.4.2.8 and 4.2 sigma 
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Figure 5.34: Simulation results displaying lost particles across a (2QZ + 5Qy) resonance. 
Lost particles are defined as those particles reaching a horizontal and vertical amplitude of 
3.50, respectively. 
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separations. At a horizontal base tune of 20.5828, the (2Q, + SQ,) 

in the simulated tune scan near the vertical base tune of 20.5669. 
resonance is observed 

0 

Measured Losses vs. Simulated Losses 
Measurement #3 

2000 4000 6000 8000 10000 
Simulated Losses (Hz) (scaled) 

Figure 5.35: A comparison of measured particle losses to simulated particle losses for Mea- 
surement 3 of Figure 5.2 1. Each data point represents a different transverse beam separation 
at BO. 

Figure 5.35 summarizes a comparison of particle losses measured at the tune setting of 

Measurement 3 in the Tevatron to simulated particle losses at a vertical base tune of 20.5664. 

This vertical base tune is shifted by O.OOfl5 tune units from the calculated tune setting which 

satisfies the relation (2QZ + 5Qy = 144). An equivalent vertical base tune shift was used in 

the comparison of simulated particle losses to Measurement 2. The scale factor, SF, used 

for the conversion of simulated particle losses to a loss rate in Equation 5.11 is equal to 1400. 

As in the case of Measurement 2, a qualitative comparison of measured losses of Mea- 

surement 3 and simulated losses is agreeable. Particle losses peak at a beam separation of 

2.8~ and then begin to decrease at a beam separation of 4.20. Increased particle losses at a 

beam separation of 1.40 are observed in both the simulation and in the measurement. 

Figure 5.36 gives the maximum horizontal and vertical % smear in the simulated tune 

scan. At a simulated vertical base tune of 20.5664, simulation results agree qualitatively 
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with measured particles losses of Measurement 3. 

MEASUREMENT 4 

Measured particle losses in the Tevatron at the base tune setting of Measurement 4 of Fig- 

ure 5.21 were very low for head-on collisions and for separated beams at BO. The average 

proton bunch intensity during the measurements was 57e9. Figure 5.37 displays the antipro- 

ton beam-beam tune footprints for a 1x1 store at this proton bunch intensity. As seen in the 

four plots, large amplitude particles remain in a resonance free region of tune space except 

in the case of head-on collisions. Since head-on collisions are not driven by odd-ordered 

resonances, it is not surprising to observe minimal particle losses at this tune setting. When 

a non-zero beam separation at BO exists, large amplitude particles are far enough from 7th 

order resonances that no losses are observed. The antiproton beam-beam footprints give suf- 

ficient information to make a prediction that antiproton losses will be minimal at the base 

tune setting of Measurement 4. 
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Figure 5.37: Antiproton beam-beam tune shift due to beam-beam detuning overlayed on 
base tune of Measurement 4. Tune shifts due to resonant effects are not shown. The proton 
intensity is 57 x 10 g. Beam-beam footprints represent collision points at both BO and EO. 
Each plot represents a different beam separation at BO. 
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Chapter 6 

CONCLUSIONS 

A comparison of beam-beam experiments with simulations has led to a deeper under- 

standing of the beam-beam interaction in the Tevatron Collider. Experimental work de- 

termined that the beam-beam interaction is the predominant nonlinear driving term which 

drives 7th order sum resonances in the Tevatron. Odd-ordered resonances were found to 

be driven in the presence of a transverse beam separation or when a crossing angle at an 

interaction point was present. 

Since 7th order resonances define a border in tune space in which stable Collider oper- 

ation occurs, a beam-beam experimental study was done to obtain a better understanding 

of beam-beam limits which exist in the Collider. Particle behavior in the presence of 7th 

order resonance driving terms was investigated. Resonant excitation due to the beam-beam 

interaction was investigated as a function of transverse beam separation. Using a single res- 

onance model in a Hamiltonian formalism, theoretical calculations of beam-beam resonant 

excitation terms as a function of beam separation was also investigated. It is shown, in both 

the theoretical calculations and in actual beam-beam experiments, that it is difficult to pre- 

dict a clear pattern of resonant excitation as a function of beam separation. 

Simulated particle losses using a beam-beam model are shown to accurately predict rela- 

tive magnitudes of beam-beam resonant excitation at different transverse beam separations. 

At various tune settings, each representing a different resonant excitation, particle losses as a 

function of beam separation were found to compare closely in simulations and loss measure- 

ments. A model of the beam-beam interaction is also shown to be capable of discovering 

dangerous resonances which will cause particle losses. 

With such a strong correlation between experiments and beam-beam simulations there 

exist many possibilities for future studies. An investigation of how well particle loss mea- 

surements in a beam-beam simulation predict particle lifetimes is a suggested extension for 



the beam-beam simulation model. A study of the predictive power of a beam-beam simu- 

lation in defining minimum beam separation criteria would be useful for understanding the 

operation of the Collider in different bunch configurations. 
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Chapter 7 

APPENDICES 



Appendix A 

ORBITCONTROLOFBEAMSEPARATIONAND 

CROSSING ANGLEATANINTERACTIONPOINT 

An algorithm used to provide simultaneous control of the transverse separation and cross- 

ing angle of colliding beams at an interaction point is presented. 

Controlling both the beam separation and crossing angle at an interaction point sp re- 

quires a closed orbit distortion using four separators; two on each side of the interaction 

region. A four-bump algorithm specifies the angular deflections, AB;, applied to the separa- 

tors to produce a closed orbit deflection of a specified orbit displacement, xp, and specified 

phase, x6, at an interaction point. The four-bump is localized in that it produces an orbit 

distortion only in the region bounded by the first and last separator bump elements. 

A four-bump is necessary because of the number of constraints and variables in the bump 

calculation. A local three-bump has three variables ( A&s of the three-bump elements ) and 

three constraints. One of the constraints is the magnitude of the bump at a given location 

and the other two constraints ensure that the bump is local; the outgoing position and phase 

at the two endpoints of the bump are constrained to zero. It is of interest to constrain both 

the separation and crossing angle at an interaction point sp, along with keeping the bump 

local. Thus a second three-bump is needed to provide the additional constraint. The four- 

bump algorithm results from the addition of two localized three-bumps. 

Consider the schematic of Figure A. 1. Angular deflections representing two three-bumps 

( dashed and dotted lines ) are added to create a four-bump ( solid line ). The effect an angu- 

lar deflection of magnitude A& at so has on a particle’s orbit at s1 is found using Equation 

2.9, which is reproduced here for convenience: 

x(s) = Ad,B(s)sin($(s) t 6). 61) 



Figure A. 1: Schematic of a four-bump which controls the position and phase at point sp. 
The four-bump (solid line) is the result of the addition of two three-bumps (dotted and 
dashed lines). Angular deflections occur at longitudinal locations so,s1,s2 and s3. 

The constants A and S are determined from initial conditions. Let x0 = 0 at a location in 

which II, = 0 and let xb = A& at that point. The solutions for the initial conditions are then 

found to be 6 = 0 and A = fi A&. An orbit displacement x1 at sr due to an angular 

deflection at so is thus given by 

x1 = AGO J- &PO sin A&O, (A-2) 

where A+,, = +I - $0 is the phase advance from so to sl. The lattice functions PO and pr 

are the beta functions at so and ~1, respectively. The derivative of x1 with respect to s gives 

xi in terms of A0, as 

x; = AO, - al sinA$ro]. (A.31 

Both x1 and xi depend on Aeo and on the lattice functions at SO and SI. It is assumed 

that the lattice functions are known. As a result, the above expressions may be rewritten as 

x1 = A Ae, 

x; = B Ad, 

(A-4) 

where A and B are constants expressed in terms of lattice functions in Equations A.2 and 

A.3, respectively. 
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From Chapter 2 ( Equation 2.13 ), a particle’s traversal in one plane from sp to sl is 

described by 

( ;;)=Mp-l( 7). (A.3 
The elements of the transfer matrix depend entirely on the lattice functions at sp and sr. 

The orbit displacement and phase at sl is thus expressed in terms of the orbit displacement 

and phase at sp multiplied by the constant matrix elements of Mp-,l: 

Xl = [(ml)P41 XP + [(dP+ll& 

x; = [(~21)P+ll XP t [(~22)P-+ll& 

64.6) 

where (mij)p+r is the matrix element in the ith row and jth column of Mp,l. Solving for 

Aeo in terms of xP and xi using Equations A.4 and A.6 yields two equations which must be 

simultaneously satisfied: 

Kml>P+l] XP + [( mz)P+l] 5; 

b21)P+l] XP t [@22)P--11 x; 

B 

64.7) 

If xp is specified as a constraint, the two equations yield solutions for xb and xl. A phase 

contribution at an interaction point, therefore, is introduced once an orbit displacement is 

specified. Similarly, specifying a particle’s phase will introduce an orbit displacement. Once 

xl is known, the angular deflections for a localized three bump at so, si and s2 are found 

using the familiar three-bump algorithm. 1% The additional phase contribution which is in- 

troduced at the interaction point must then be cancelled by subtracting a second three-bump 

constrained to the same phase. 

The angular deflections for 

local three-bump algorithm:m 

the first three-bump at so,sl and s2 are calculated using a 

Aoo, = 
Xla 

diTZsin($l - $0)' 

AOr, = ABoa 

(A.@ 



Note that xla F x1 in Equation A.6 above. The index n is added to the subscript of x1 and 

AB; in order to make a distinction between the two three-bump calculations. 

Similarly, the angular deflections due to a second three-bump at sl, s2 and sa are calcu- 

lated as follows. An angular deflection at sl, A&,, translates into an orbit displacement at 

s2 of magnitude 

X26 = A8u,~ht% sin Aqh. (A-9) 

The subscript b designates the second three bump. In terms of xp and xb, the orbit displace- 

ment and phase at s2 is given by 

x2b = [(77-‘11)Pw2] XP + [(77-42)P-21 x)p, (A. 10) 

& = [(m21)h2] xp t [(m22)P+2] x'p- 

The angular deflections for the second three bump are given by 

A&b = x2b 

dPT2sin(+2 - til) ' 

A&b = AOlb 

J 

@in@3 - $1) 

P2 sin($3 - +2) ' 

A&b = 
Aelb 

(A.ll) 

By subtracting the angular deflections of the second three-bump from the first three-bump, 

the undesired phase or orbit distortion introduced by the first three-bump is eliminated. The 

final four-bump angular deflections are expressed as 

Ae, = Ae,,, 

heI = Aela - Ah, 

A& = A62, - Ao2b, 

A03 = -Ao3b, 

(A.12) 

where AO, and A&, are listed in Equations A.8 and A. 11, respectively. 

Since the bump elements in this case are separators, a conversion from the prad settings 

calculated above to kV settings is necessary. The ICV to prad conversion is given by 
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V(kV] = 
AO[p?-ad] * p[GeV/c] * g[cm] 

+m] * hod&s ’ 
(A.13) 

where V is the voltage across opposing separator plates and p is the momentum of the beam. 

The gap across the plates is denoted as g. The length of the plate is I and the number of 

modules which compose one separator is r&,&&s. In the Tevatron, the separator gap is 5 

cm. A module length is 257 cm. The number of modules at each location is shown in Figure 

5.1. 

Separator Lattice Parameters 

Table A. 1: Separator lattice parameters in Collider Run IA. A phase advance of zero 

is defined at the EO straight section. Lattice values are averaged over the number of 

modules. 

Table A. 1 lists the lattice functions of the separators in Collider Run IA. The lattice func- 

tions listed are values averaged over the number of modules. 
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Appendix B 

LUMINOSITYASAFUNCTIONOFSEPARATION 

ANDCROSSINGANGLE 

This appendix presents a calculation of luminosity as a function of transverse separation 

and crossing angle of two colliding particle distributions. It closely follows the luminosity 

calculation for head-on collisions as described by Month. [63l Note that this is an alternative 

derivation of luminosity as compared with Equation 1.1, which is a definition of luminosity. 

The luminosity, L, is a relativistic invariant. It is described by 

L = c l/I $I - $2 I2 - 1 a x p; I2 qx,y,4 tB.1) 
where the parameter c is the speed of light and a is the particle velocities in units of the 

speed of light. The subscripts 1 and 2 denote bunches 1 and 2, respectively. The overlap in- 

tegral, 1(x, y, z, t), is the overlap of the colliding particle distributions integrated over three- 

dimensional space and time. 

qx,Y,Z,t) = L/vJ_mm dt pl(x, y, z, t) 4x, y, 0) 03.2) 

where dV 3 dx dy dz represents an integration over space and t represents an integration 

over time. 

The particle distributions, assumed Gaussian, colliding with a transverse separation of 

magnitude d, and d, in the horizontal and vertical planes, respectively, are given by 

Pl(X,Y,~,~) = + f + (* ->)‘]) (B.3) 
Ol* 

N2 
P2(‘, Y7 ‘> t, = (2s)3/202r~2y~2z exP 

+ (Y - 4J2 + (2 - G2 
Gy 4, 

03.4) 



The number of particles per bunch is given by N. The longitudinal offset of the centroids 

of the colliding bunches is given by 6. If one of the bunches, for example, is centered at the 

collison point at t = 0 and the other bunch is offset from the collision point by an amount 

za at t = 0, the longitudinal offset parameters satisfy 51 = ct and & = -ct + 20. The rms 

bunch size is parameterized by CT in both the transverse and longitudinal planes. 

Recall from Equation 2.28 that cr is itself a function of Z: 

(B.5) 

where p(z) is described by Equation 2.44 and the dispersion V(Z) is linear through a drift 

space: II(.Z) = qZZo + 7’~. In terms of accelerator parameters, the rms momentum spread 

of a bunch is given by WI 

(F) =&~s+$). 03.6) 

The peak accelerating voltage per turn is given by (eV). Relativistic beta is explicitely 

written as ,&. The harmonic number is denoted by h. The radius of the accelerating ring 

is given by R and the total synchronous energy is I?, . The frequency dispersion parameter, 

7, is dependent upon both the transition gamma, -yt, and relativistic gamma, rtel: 

(B.7) 

The instantaneous luminosity, L( t ), is in units of cmW2 set-’ . The luminosity per bunch 

collision, L, is found by integrating over time and is in units of cmm2. 

The integration of the overlap integral over transverse space is solved analytically: 

J -dkexp --co 
@W 

where k z CC, y represents either transverse dimension. 

The integral over time is also analytically solved: 
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For convenience, define the new parameters: 

(B. 10) 

Upon combining the results of the integrations of Equations B.8 and B.9, the overlap integral 

becomes a function of longitudinal space only. 

d”, c2’ - ‘012 
- ~ - 1 (B 11) 

2a3z) 24 - 

At high energy, the relativistic factor of Equation B. 1 for two colliding bunches is very 

nearly equal to 2, since 1 ,& - g2 1% 2 and 1 & x ,& 1~ 0. Thus the luminosity per bunch 

crossing is given by 

J O3 dz 
1 4 4 (22 - zg 

’ (B-12) -rn h(Z) q/(z) exp 202(z) - 2a,20 - 20; 1 
where only one numerical integration remains. 

By making an assumption that the transverse beam size is independent of z, the above 

expression for the luminosity is analytically expressed as 

(B.13) 

If there is no beam separation and a round beam assumption is made such that olZ = ~2~ = 

~71~ = (~2~ = Q, the familiar expression for the luminosity is obtained: 

NN2 c=qx(Tz- 
If a crossing angle is present, the transverse separation d is replaced by 

(B. 14) 

d; = d;, + 2z tan t, (B.15) 

where the subscript i 3 2, y denotes a transverse plane. The existence of a beam separa- 

tion is included in the term do. The crossing angle Q is the full crossing angle as depicted 

in Figure B.l. Upon substituting the above expression into Equation B. 12 and making the 

assumption that transverse sigma are independent of z, one obtains a luminosity expression 
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Figure B.l: A schematic of two bunches colliding with a full crossing angle Q. 

dependent upon a crossing angle. For a crossing angle in the horizontal plane, the luminos- 

ity is 

(B.16) 

where CT,, = Ji. This expression assumes that do = 0 in both transverse 

planes and that z. = 0. If a round beam is assumed, the familiar dependence of luminosity 

on a crossing angle in one dimension is obtained: 

L = 2na&g-y 
(B. 17) 

where the subscript i G CC, y denotes a given transverse plane. 1151 
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Appendix C 

A HISTORICALREVIEW OF THEUSE OF 

ELECTROSTATIC SEPARATORS INCOLLIDERS~ 

Coinciding with efforts to reduce observed luminosity limitations, electrostatic sep- 

arators were used at a very early stage in the development of colliders. 

Beam-beam interaction effects were observed to be a luminosity limitation in the VEPP- 

2 electron-positron collider in Novosibirsk in 1965. “Effects of electromagnetic interaction 

between colliding beams (‘Beam-beam phenomena’) seem to place rather principle restric- 

tions on the achievable luminosity. “[@I Beam-beam luminosity limitations seem to have 

led quite naturally to an implementation of electrostatic separators in colliders in order to 

separate particles of opposite charge in the same storage ring and decrease beam-beam in- 

teraction effects. 

There were several early uses of electrostatic separators in a variety of storage rings. 

The VEPP-2 storage ring was colliding electrons and positrons in 1967 at a center-of-mass 

energy of 400 MeV. An “orbit splitting” technique with the help of an electric field was used 

at that time. Beam separation enabled stored electrons to reach currents of 100 mA without 

large positron losses. [l] Two years later, the Orsay collaboration in France was also faced 

with a beam-beam luminosity limitation in the AC0 electron-positron collider. A current 

limit of 20 mA per bunch existed for two colliding bunches at a center of mass energy of 

1070 MeV. In order to “fight the effect”, electrostatic separation was used.[“j The collider 

at Laboratori Nazionali di Frascati (ADONE), colliding electrons and positrons at a center- 

of-mass energy of 3.0 GeV, used separators for beam stability at injection. [7 11 

‘This appendix i s not part of the dissertation submitted to the University of New Mexico. It is 
included only in the Fermilab internal note. 



The Cambridge Electron Facility (CEA) extended the use of separators for multibunch 

operation.l721 Electron and positron bunches were accelerated in the CEA in 1969 to ener- 

gies of approximately 4 GeV. The bunches filled approximately one-third of the synchrotron. 

Vertical separation was used to separate bunches at parasitic crossing points.l73l “Physical 

separation with electrostatic fields....is necessary to avoid short lifetimes of the weaker of 

the two beams due to the incoherent space charge interaction. “1741 Separated orbits of the 

electrons and positrons in the storage ring were kicked onto the same closed orbit in the 

bypass interaction region and collided head-on at the interaction region.175l 

Electrostatic separators continued to be utilized as higher energy electron-positron col- 

liders were constructed, such as the 6.0 GeV (center-of-mass) SPEAR electron-positron col- 

lider at Stanford Linear Accelerator Complex (SLAC).17@ 

A major technical difficulty in operation of electrostatic separators is in maintaining a 

spark rate of zero. One spark often proves disasterous for a colliding beam store. The first 

electrostatic separators operated at voltages of approximately 10 kV/cm. As particles were 

accelerated to higher energies, voltage requirements on electrostatic separators increased 

to approximately 50 kV/cm. These high voltage separators were built almost simultane- 

ously and independantly for the SPS proton-antiproton collider at CERN and for the CESR 

electron-positron collider at Cornell University. Both accelerator collaborations presented 

experimental results on their newly deviced “pretzel orbit schemes” at the 1985 IEEE Par- 

ticle Accelerator Conference (Vancouver) with no reference to each other. f1771d781 CESR 

began using electrostatic separators in the horizontal plane to allow for multi-bunch oper- 

ation and raise the luminosity. 1791 The SPS implemented a horizontal orbit separation in 

order to decrease the beam-beam tune shift of the antiprotons and accomodate collisions of 

six antiproton and six proton bunches. G301 

Electrostatic separators remain an integral part of many high-energy colliders which 

were constructed in recent years. The Tevatron Collider at Fermilab collides protons and 

antiprotons at a center of mass energy of 1800 GeV. The Collider had reached a luminos- 

ity limit due to the beam-beam interaction in its first Collider Run in 1988. One could not 

increase the luminosity by decreasing the transverse size of the proton bunch or by increas- 

ing the number of protons per bunch. In fact, it was necessary to dilute phase space density 

of the protons in order to maintain stability of the antiprotons. I8 II Taking advantage of the 

equal transverse size of the bunch distributions (round beams), the Tevatron implemented a 

helical orbit scheme by separating the orbits of the protons and antiprotons in both the hor- 

izontal and vertical planes. The opposing particle distributions are separated everywhere 
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in the ring except at the locations of the two high energy physics detectors. l82l The achiev- 

able luminosity of 1.6 x 1030cm-2sec-1 without beam separation increased to luminosities 

of 5 4 x 1030cm-2sec-1 
‘3 Run.1 1 

in routine operations with helical orbits in the following Collider 

In CERN’s electron-positron collider at LEP, consideration of different operational con- 

figurations of electrostatic separators has continually led to increases in the luminosity. In 

1990, the LEP ring began to collide four bunches of electrons and positrons at a center- 

of-mass energy of 90 GeV at four high energy physics detector locations. Vertical separa- 

tors were used to separate the beam at the four parasitic locations in the accelerating ring. 

Following the multi-bunch scheme developed at CESR, more separators were installed at 

LEP and more bunches were accelerated (up to eight) shortly afterwards.l83lFl84l To further 

increase the luminosity, a recent proposal for a “bunch-train” scheme has been approved 

which consists of accelerating four equidistant trains of bunches in each beam instead of 

four to eight single bunches. 18% Previous problems with sparking of electrostatic separa- 

tors in LEP have been essentially eliminated by always operating one electrostatic plate at 

ground potential and the other at positive potential.l86l 

Plans for future accelerators continue to include electrostatic separators as a tool in avoid- 

ing luminosity limitations due to the beam-beam interaction. Recent studies of expected 

beam-beam effects in CERN’s Large Hadron Collider (LHC) have determined that the main 

limit to the luminosity will be the beam-beam effect. 1871 Planned operation with closely 

spaced bunches in an interaction region add another level of complexity to beam-beam lu- 

minosity limitations as long-range beam-beam effects become much more significant. WI 
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